{"title":"纳米材料驱动人工智能在生物医学应用中的新趋势综述。","authors":"Subhendu Chakroborty, Nibedita Nath, Sameeta Sahoo, Bhanu Pratap Singh, Trishna Bal, Karunesh Tiwari, Yosief Kasshun Hailu, Sunita Singh, Pravin Kumar, Chandra Chakraborty","doi":"10.1039/d5na00032g","DOIUrl":null,"url":null,"abstract":"<p><p>The field of artificial intelligence (AI) is expanding quickly. To mimic the structure and biological evolution of the human brain, AI was developed to enable computers to acquire knowledge and manipulate their surroundings. There have been notable developments in the use of AI in healthcare; it can enhance diagnosis and treatment in various medical specialties. The cost of prompt diagnosis and treatment is hampered by the absence of efficient, dependable, and reasonably priced detection and real-time monitoring. Smart health tracking systems integrating AI and nanoscience are an emerging frontier that solves these obstacles. Targeted delivery of drug systems, biosensing, imaging, and other diagnostic and therapeutic fields can widely benefit abundantly from nanoscience in healthcare. AI technology has the potential to expand biomedical applications by analyzing and interpreting biological data, speeding up drug discovery, and identifying novel molecules with predictive behavior. This review outlines the current obstacles and potential opportunities for delivering personal healthcare using AI-assisted clinical decision support systems.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071765/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of emerging trends in nanomaterial-driven AI for biomedical applications.\",\"authors\":\"Subhendu Chakroborty, Nibedita Nath, Sameeta Sahoo, Bhanu Pratap Singh, Trishna Bal, Karunesh Tiwari, Yosief Kasshun Hailu, Sunita Singh, Pravin Kumar, Chandra Chakraborty\",\"doi\":\"10.1039/d5na00032g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of artificial intelligence (AI) is expanding quickly. To mimic the structure and biological evolution of the human brain, AI was developed to enable computers to acquire knowledge and manipulate their surroundings. There have been notable developments in the use of AI in healthcare; it can enhance diagnosis and treatment in various medical specialties. The cost of prompt diagnosis and treatment is hampered by the absence of efficient, dependable, and reasonably priced detection and real-time monitoring. Smart health tracking systems integrating AI and nanoscience are an emerging frontier that solves these obstacles. Targeted delivery of drug systems, biosensing, imaging, and other diagnostic and therapeutic fields can widely benefit abundantly from nanoscience in healthcare. AI technology has the potential to expand biomedical applications by analyzing and interpreting biological data, speeding up drug discovery, and identifying novel molecules with predictive behavior. This review outlines the current obstacles and potential opportunities for delivering personal healthcare using AI-assisted clinical decision support systems.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071765/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00032g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00032g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A review of emerging trends in nanomaterial-driven AI for biomedical applications.
The field of artificial intelligence (AI) is expanding quickly. To mimic the structure and biological evolution of the human brain, AI was developed to enable computers to acquire knowledge and manipulate their surroundings. There have been notable developments in the use of AI in healthcare; it can enhance diagnosis and treatment in various medical specialties. The cost of prompt diagnosis and treatment is hampered by the absence of efficient, dependable, and reasonably priced detection and real-time monitoring. Smart health tracking systems integrating AI and nanoscience are an emerging frontier that solves these obstacles. Targeted delivery of drug systems, biosensing, imaging, and other diagnostic and therapeutic fields can widely benefit abundantly from nanoscience in healthcare. AI technology has the potential to expand biomedical applications by analyzing and interpreting biological data, speeding up drug discovery, and identifying novel molecules with predictive behavior. This review outlines the current obstacles and potential opportunities for delivering personal healthcare using AI-assisted clinical decision support systems.