{"title":"多机器人覆盖探测中障碍物诱导环境复杂性评估准则。","authors":"Khalil Al-Rahman Youssefi Darmian, Reza Abbaszadeh Darban, Gregor Kastner, Wilfried Elmenreich","doi":"10.1371/journal.pone.0323112","DOIUrl":null,"url":null,"abstract":"<p><p>In many applications, such as coverage exploration and search and rescue missions, accurately assessing environmental complexity is valuable for performance evaluation and algorithm adjustments. Despite this, in the context of multi-robot systems, quantifying environmental complexity caused by obstacles when using autonomous ground robots presents significant challenges. This research proposes a criterion for measuring environments' obstacle-induced complexity in the context of autonomous multi-robot coverage exploration. The criterion rates the environment's complexity numerically, where 0 denotes obstacle-free setups, and the value increases with obstacle-related effects, reaching a maximum of 1, representing the highest measurable complexity for the criterion. The proposed criterion is independent of robot hardware specifications and algorithm-specific aspects. Furthermore, it is independent of the environment's size and the ratio of the area occupied by obstacles, enabling comparisons across various environments. Statistical analysis shows the metric performs well both on average and in single-case comparisons.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0323112"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083827/pdf/","citationCount":"0","resultStr":"{\"title\":\"A criterion for assessing obstacle-induced environmental complexity in multi-robot coverage exploration.\",\"authors\":\"Khalil Al-Rahman Youssefi Darmian, Reza Abbaszadeh Darban, Gregor Kastner, Wilfried Elmenreich\",\"doi\":\"10.1371/journal.pone.0323112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many applications, such as coverage exploration and search and rescue missions, accurately assessing environmental complexity is valuable for performance evaluation and algorithm adjustments. Despite this, in the context of multi-robot systems, quantifying environmental complexity caused by obstacles when using autonomous ground robots presents significant challenges. This research proposes a criterion for measuring environments' obstacle-induced complexity in the context of autonomous multi-robot coverage exploration. The criterion rates the environment's complexity numerically, where 0 denotes obstacle-free setups, and the value increases with obstacle-related effects, reaching a maximum of 1, representing the highest measurable complexity for the criterion. The proposed criterion is independent of robot hardware specifications and algorithm-specific aspects. Furthermore, it is independent of the environment's size and the ratio of the area occupied by obstacles, enabling comparisons across various environments. Statistical analysis shows the metric performs well both on average and in single-case comparisons.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0323112\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0323112\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0323112","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A criterion for assessing obstacle-induced environmental complexity in multi-robot coverage exploration.
In many applications, such as coverage exploration and search and rescue missions, accurately assessing environmental complexity is valuable for performance evaluation and algorithm adjustments. Despite this, in the context of multi-robot systems, quantifying environmental complexity caused by obstacles when using autonomous ground robots presents significant challenges. This research proposes a criterion for measuring environments' obstacle-induced complexity in the context of autonomous multi-robot coverage exploration. The criterion rates the environment's complexity numerically, where 0 denotes obstacle-free setups, and the value increases with obstacle-related effects, reaching a maximum of 1, representing the highest measurable complexity for the criterion. The proposed criterion is independent of robot hardware specifications and algorithm-specific aspects. Furthermore, it is independent of the environment's size and the ratio of the area occupied by obstacles, enabling comparisons across various environments. Statistical analysis shows the metric performs well both on average and in single-case comparisons.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage