大角片对球差系数的影响。

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Jincan Su, Xiaotian Hu, Tao Hu, Shigang Dong, Jian Zhang, Yucheng Liu, Faguo Chen, Bingtao Zhang
{"title":"大角片对球差系数的影响。","authors":"Jincan Su, Xiaotian Hu, Tao Hu, Shigang Dong, Jian Zhang, Yucheng Liu, Faguo Chen, Bingtao Zhang","doi":"10.1111/jmi.13430","DOIUrl":null,"url":null,"abstract":"<p><p>X-rays, secondary electrons, and other emitted electrons need to be extracted at a large solid angle to enhance electron collection efficiency in transmission electron microscopy. The finite element method is employed to investigate the effects of different polepiece angles on the spherical aberration coefficient of polepiece. The research findings reveal that the azimuthal angle β of the upper polepiece has a substantial effect on the spherical aberration coefficient. When β = 30°, the minimum spherical aberration coefficient is achieved. When β ≥ 50°, the spherical aberration coefficient increases significantly, which adversely affects imaging. The aperture size of the upper polepiece has a relatively minor effect on the spherical aberration. The design of the large-angle polepiece offers novel design concepts for future emission X-ray/electron collection devices, while also offering a new reference for the design of objective lenses in transmission electron microscopy.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of large angle polepiece on spherical aberration coefficient.\",\"authors\":\"Jincan Su, Xiaotian Hu, Tao Hu, Shigang Dong, Jian Zhang, Yucheng Liu, Faguo Chen, Bingtao Zhang\",\"doi\":\"10.1111/jmi.13430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>X-rays, secondary electrons, and other emitted electrons need to be extracted at a large solid angle to enhance electron collection efficiency in transmission electron microscopy. The finite element method is employed to investigate the effects of different polepiece angles on the spherical aberration coefficient of polepiece. The research findings reveal that the azimuthal angle β of the upper polepiece has a substantial effect on the spherical aberration coefficient. When β = 30°, the minimum spherical aberration coefficient is achieved. When β ≥ 50°, the spherical aberration coefficient increases significantly, which adversely affects imaging. The aperture size of the upper polepiece has a relatively minor effect on the spherical aberration. The design of the large-angle polepiece offers novel design concepts for future emission X-ray/electron collection devices, while also offering a new reference for the design of objective lenses in transmission electron microscopy.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13430\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13430","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

在透射电子显微镜中,为了提高电子收集效率,需要以较大的立体角提取x射线、二次电子和其他发射电子。采用有限元方法研究了不同杆片角度对杆片球差系数的影响。研究结果表明,上极片的方位角β对球差系数有较大影响。当β = 30°时,球差系数最小。当β≥50°时,球差系数明显增大,不利于成像。上片孔径大小对球差的影响较小。大角度偏振片的设计为未来的发射x射线/电子收集装置提供了新的设计理念,同时也为透射电子显微镜物镜的设计提供了新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of large angle polepiece on spherical aberration coefficient.

X-rays, secondary electrons, and other emitted electrons need to be extracted at a large solid angle to enhance electron collection efficiency in transmission electron microscopy. The finite element method is employed to investigate the effects of different polepiece angles on the spherical aberration coefficient of polepiece. The research findings reveal that the azimuthal angle β of the upper polepiece has a substantial effect on the spherical aberration coefficient. When β = 30°, the minimum spherical aberration coefficient is achieved. When β ≥ 50°, the spherical aberration coefficient increases significantly, which adversely affects imaging. The aperture size of the upper polepiece has a relatively minor effect on the spherical aberration. The design of the large-angle polepiece offers novel design concepts for future emission X-ray/electron collection devices, while also offering a new reference for the design of objective lenses in transmission electron microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信