Synphilin-1通过与zyxin的相互作用调节刚性感应的机械转导。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Seok Gi Kim, Jinyan Li, Ji Su Hwang, Muhammad Anwar Ul Hassan, Ye Eun Sim, Ju Yeon Lee, Jung-Soon Mo, Myeong Ok Kim, Gwang Lee, Sungsu Park
{"title":"Synphilin-1通过与zyxin的相互作用调节刚性感应的机械转导。","authors":"Seok Gi Kim, Jinyan Li, Ji Su Hwang, Muhammad Anwar Ul Hassan, Ye Eun Sim, Ju Yeon Lee, Jung-Soon Mo, Myeong Ok Kim, Gwang Lee, Sungsu Park","doi":"10.1186/s12951-025-03429-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Synphilin-1 has been studied extensively in the context of Parkinson's disease pathology. However, the biophysical functions of synphilin-1 remain unexplored. To investigate its novel functionalities herein, cellular traction force and rigidity sensing ability are analyzed based on synphilin-1 overexpression using elastomeric pillar arrays and substrates of varying stiffness. Molecular changes are analyzed using RNA sequencing-based transcriptomic and liquid chromatography-tandem mass spectrometry-based proteomic analyses.</p><p><strong>Results: </strong>Synphilin-1 overexpression reduces cell area, with a decline of local contraction on elastomeric pillar arrays. Cells overexpressing synphilin-1 exhibit an impaired ability to respond to substrate rigidity; however, synphilin-1 knockdown restores rigidity sensing abilities. Integrated omics analysis and in silico prediction corroborate the phenotypic alterations induced by synphilin-1 overexpression at a biophysical level. Zyxin emerges as a novel synphilin-1 binding protein, and synphilin-1 overexpression reduces the nuclear translocation of yes-associated protein.</p><p><strong>Conclusion: </strong>These findings provide novel insights into the biophysical functions of synphilin-1, suggesting a potential protective role to the altered extracellular matrix, which may be relevant to neurodegenerative conditions such as Parkinson's disease.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"345"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synphilin-1 regulates mechanotransduction in rigidity sensing through interaction with zyxin.\",\"authors\":\"Seok Gi Kim, Jinyan Li, Ji Su Hwang, Muhammad Anwar Ul Hassan, Ye Eun Sim, Ju Yeon Lee, Jung-Soon Mo, Myeong Ok Kim, Gwang Lee, Sungsu Park\",\"doi\":\"10.1186/s12951-025-03429-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Synphilin-1 has been studied extensively in the context of Parkinson's disease pathology. However, the biophysical functions of synphilin-1 remain unexplored. To investigate its novel functionalities herein, cellular traction force and rigidity sensing ability are analyzed based on synphilin-1 overexpression using elastomeric pillar arrays and substrates of varying stiffness. Molecular changes are analyzed using RNA sequencing-based transcriptomic and liquid chromatography-tandem mass spectrometry-based proteomic analyses.</p><p><strong>Results: </strong>Synphilin-1 overexpression reduces cell area, with a decline of local contraction on elastomeric pillar arrays. Cells overexpressing synphilin-1 exhibit an impaired ability to respond to substrate rigidity; however, synphilin-1 knockdown restores rigidity sensing abilities. Integrated omics analysis and in silico prediction corroborate the phenotypic alterations induced by synphilin-1 overexpression at a biophysical level. Zyxin emerges as a novel synphilin-1 binding protein, and synphilin-1 overexpression reduces the nuclear translocation of yes-associated protein.</p><p><strong>Conclusion: </strong>These findings provide novel insights into the biophysical functions of synphilin-1, suggesting a potential protective role to the altered extracellular matrix, which may be relevant to neurodegenerative conditions such as Parkinson's disease.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"345\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03429-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03429-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:Synphilin-1在帕金森氏病病理中被广泛研究。然而,synphilin-1的生物物理功能尚不清楚。为了研究synphilin-1的新功能,我们利用弹性柱阵列和不同刚度的基质,分析了synphilin-1过表达的细胞牵引力和刚度感知能力。使用基于RNA测序的转录组学和基于液相色谱-串联质谱的蛋白质组学分析来分析分子变化。结果:Synphilin-1过表达使细胞面积减小,弹性柱阵列的局部收缩减弱。过度表达synphilin-1的细胞表现出对底物刚性的反应能力受损;然而,synphilin-1敲低可以恢复刚性感知能力。综合组学分析和计算机预测在生物物理水平上证实了synphilin-1过表达引起的表型改变。Zyxin作为一种新的synphilin-1结合蛋白出现,synphilin-1过表达减少了yes相关蛋白的核易位。结论:这些发现为synphilin-1的生物物理功能提供了新的见解,表明细胞外基质的改变可能具有潜在的保护作用,这可能与神经退行性疾病如帕金森病有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synphilin-1 regulates mechanotransduction in rigidity sensing through interaction with zyxin.

Background: Synphilin-1 has been studied extensively in the context of Parkinson's disease pathology. However, the biophysical functions of synphilin-1 remain unexplored. To investigate its novel functionalities herein, cellular traction force and rigidity sensing ability are analyzed based on synphilin-1 overexpression using elastomeric pillar arrays and substrates of varying stiffness. Molecular changes are analyzed using RNA sequencing-based transcriptomic and liquid chromatography-tandem mass spectrometry-based proteomic analyses.

Results: Synphilin-1 overexpression reduces cell area, with a decline of local contraction on elastomeric pillar arrays. Cells overexpressing synphilin-1 exhibit an impaired ability to respond to substrate rigidity; however, synphilin-1 knockdown restores rigidity sensing abilities. Integrated omics analysis and in silico prediction corroborate the phenotypic alterations induced by synphilin-1 overexpression at a biophysical level. Zyxin emerges as a novel synphilin-1 binding protein, and synphilin-1 overexpression reduces the nuclear translocation of yes-associated protein.

Conclusion: These findings provide novel insights into the biophysical functions of synphilin-1, suggesting a potential protective role to the altered extracellular matrix, which may be relevant to neurodegenerative conditions such as Parkinson's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信