{"title":"以活性为导向,从厚木叶中发现α-葡萄糖苷酶和β-葡萄糖苷酶双抑制剂。","authors":"Yanxi He, Huanran Xu, Shaoqian Tan, Jing Long, Hui Lei, Ling Xiao, Xiaoyi Qi, Mingming Deng, Xia Xiong, Jingcan You, Liangliang Zhu, Muhan Lü, Sicheng Liang","doi":"10.1080/14756366.2025.2501041","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) and cancers are two globally prevalent diseases which can increase the incidence of each other. Intestinal α-glucosidase and β-glucuronidase are key targets for glycaemic control and chemotherapy detoxification, respectively. This study first found that the leaf methanol extract of <i>Millettia pachycarpa</i> displayed dual inhibition to the two enzymes. The dually active constituents were then isolated and identified as two prenylated isoflavones of 6,8-diprenylorobol and 6,8-diprenylgenistein. Diprenylorobol exhibits competitive inhibition to both the two enzymes with <i>K<sub>i</sub></i> values of 21.6 μM (α-glucosidase) and 1.41 μM (β-glucuronidase). Diprenylgenistein is an uncompetitive inhibitor of α-glucosidase (<i>K<sub>i</sub></i> = 11.4 μM) but a competitive inhibitor of β-glucuronidase (<i>K<sub>i</sub></i> = 1.69 μM). Molecular docking studies showed that both the two isoflavones tightly bind into the active pockets via various hydrogen bonds and hydrophobic interactions. In summary, the current study identifies two promising dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of <i>Millettia pachycarpa</i>.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2501041"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activity guided discovery of dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of <i>Millettia pachycarpa</i> Benth.\",\"authors\":\"Yanxi He, Huanran Xu, Shaoqian Tan, Jing Long, Hui Lei, Ling Xiao, Xiaoyi Qi, Mingming Deng, Xia Xiong, Jingcan You, Liangliang Zhu, Muhan Lü, Sicheng Liang\",\"doi\":\"10.1080/14756366.2025.2501041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes mellitus (T2DM) and cancers are two globally prevalent diseases which can increase the incidence of each other. Intestinal α-glucosidase and β-glucuronidase are key targets for glycaemic control and chemotherapy detoxification, respectively. This study first found that the leaf methanol extract of <i>Millettia pachycarpa</i> displayed dual inhibition to the two enzymes. The dually active constituents were then isolated and identified as two prenylated isoflavones of 6,8-diprenylorobol and 6,8-diprenylgenistein. Diprenylorobol exhibits competitive inhibition to both the two enzymes with <i>K<sub>i</sub></i> values of 21.6 μM (α-glucosidase) and 1.41 μM (β-glucuronidase). Diprenylgenistein is an uncompetitive inhibitor of α-glucosidase (<i>K<sub>i</sub></i> = 11.4 μM) but a competitive inhibitor of β-glucuronidase (<i>K<sub>i</sub></i> = 1.69 μM). Molecular docking studies showed that both the two isoflavones tightly bind into the active pockets via various hydrogen bonds and hydrophobic interactions. In summary, the current study identifies two promising dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of <i>Millettia pachycarpa</i>.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":\"40 1\",\"pages\":\"2501041\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2025.2501041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2501041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Activity guided discovery of dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of Millettia pachycarpa Benth.
Type 2 diabetes mellitus (T2DM) and cancers are two globally prevalent diseases which can increase the incidence of each other. Intestinal α-glucosidase and β-glucuronidase are key targets for glycaemic control and chemotherapy detoxification, respectively. This study first found that the leaf methanol extract of Millettia pachycarpa displayed dual inhibition to the two enzymes. The dually active constituents were then isolated and identified as two prenylated isoflavones of 6,8-diprenylorobol and 6,8-diprenylgenistein. Diprenylorobol exhibits competitive inhibition to both the two enzymes with Ki values of 21.6 μM (α-glucosidase) and 1.41 μM (β-glucuronidase). Diprenylgenistein is an uncompetitive inhibitor of α-glucosidase (Ki = 11.4 μM) but a competitive inhibitor of β-glucuronidase (Ki = 1.69 μM). Molecular docking studies showed that both the two isoflavones tightly bind into the active pockets via various hydrogen bonds and hydrophobic interactions. In summary, the current study identifies two promising dual inhibitors of α-glucosidase and β-glucuronidase from the leaves of Millettia pachycarpa.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.