基于诊断标准项目对阿片类药物使用障碍进行聚类分析。

Industrial Psychiatry Journal Pub Date : 2025-01-01 Epub Date: 2025-04-18 DOI:10.4103/ipj.ipj_430_24
Shweta Birla, Vinit Patel, Dinesh Gupta, Rishi Gupta, Yatan Pal Singh Balhara, Siddharth Sarkar
{"title":"基于诊断标准项目对阿片类药物使用障碍进行聚类分析。","authors":"Shweta Birla, Vinit Patel, Dinesh Gupta, Rishi Gupta, Yatan Pal Singh Balhara, Siddharth Sarkar","doi":"10.4103/ipj.ipj_430_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Opioid use disorder (OUD) is a global concern with a reported shift in changing demographic and biopsychosocial profiles. Characterization of clusters based on diagnostic symptom criteria can help to understand the underlying associations between these criteria.</p><p><strong>Aim: </strong>The present study identifies clusters based on OUD diagnostic criteria, which may reveal clinically relevant subgroups of individuals with OUDs.</p><p><strong>Materials and methods: </strong>The DSM5 diagnostic system OUD diagnosis was made for 204 male participants. An unsupervised clustering analysis focused on the individual 11 DSM5 diagnostic criteria.</p><p><strong>Results: </strong>Using the DSM5 diagnostic criteria, we obtained two clusters based on severity. Further, analyzing clinical information along with DSM5 criteria, two groups varying in OUD severity, presence of injecting drug use, and employment were identified.</p><p><strong>Conclusion: </strong>Based on cluster analysis, two main clusters of DSM5 criteria emerged. Rather than DSM5 symptoms clustering with each other based on the similarity of symptomatology, they aggregate numerically reflecting severity.</p>","PeriodicalId":13534,"journal":{"name":"Industrial Psychiatry Journal","volume":"34 1","pages":"32-38"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077617/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classifying opioid use disorder based on diagnostic criteria items using cluster analysis.\",\"authors\":\"Shweta Birla, Vinit Patel, Dinesh Gupta, Rishi Gupta, Yatan Pal Singh Balhara, Siddharth Sarkar\",\"doi\":\"10.4103/ipj.ipj_430_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Opioid use disorder (OUD) is a global concern with a reported shift in changing demographic and biopsychosocial profiles. Characterization of clusters based on diagnostic symptom criteria can help to understand the underlying associations between these criteria.</p><p><strong>Aim: </strong>The present study identifies clusters based on OUD diagnostic criteria, which may reveal clinically relevant subgroups of individuals with OUDs.</p><p><strong>Materials and methods: </strong>The DSM5 diagnostic system OUD diagnosis was made for 204 male participants. An unsupervised clustering analysis focused on the individual 11 DSM5 diagnostic criteria.</p><p><strong>Results: </strong>Using the DSM5 diagnostic criteria, we obtained two clusters based on severity. Further, analyzing clinical information along with DSM5 criteria, two groups varying in OUD severity, presence of injecting drug use, and employment were identified.</p><p><strong>Conclusion: </strong>Based on cluster analysis, two main clusters of DSM5 criteria emerged. Rather than DSM5 symptoms clustering with each other based on the similarity of symptomatology, they aggregate numerically reflecting severity.</p>\",\"PeriodicalId\":13534,\"journal\":{\"name\":\"Industrial Psychiatry Journal\",\"volume\":\"34 1\",\"pages\":\"32-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077617/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Psychiatry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ipj.ipj_430_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Psychiatry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ipj.ipj_430_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:阿片类药物使用障碍(OUD)是一个全球关注的问题,据报道,人口统计学和生物心理社会概况发生了变化。基于诊断症状标准的群集特征可以帮助理解这些标准之间的潜在关联。目的:本研究根据OUD诊断标准确定集群,这可能揭示患有OUD的个体的临床相关亚群。材料与方法:采用DSM5诊断系统对204名男性受试者进行OUD诊断。无监督聚类分析侧重于单个11个DSM5诊断标准。结果:使用DSM5诊断标准,我们根据严重程度获得了两组。进一步,根据dsm - 5标准分析临床信息,确定了两组在OUD严重程度、注射吸毒和就业方面存在差异的患者。结论:基于聚类分析,DSM5标准出现了两个主要聚类。不同于DSM5症状基于症状学的相似性而相互聚类,它们以数字聚合反映严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classifying opioid use disorder based on diagnostic criteria items using cluster analysis.

Classifying opioid use disorder based on diagnostic criteria items using cluster analysis.

Classifying opioid use disorder based on diagnostic criteria items using cluster analysis.

Background: Opioid use disorder (OUD) is a global concern with a reported shift in changing demographic and biopsychosocial profiles. Characterization of clusters based on diagnostic symptom criteria can help to understand the underlying associations between these criteria.

Aim: The present study identifies clusters based on OUD diagnostic criteria, which may reveal clinically relevant subgroups of individuals with OUDs.

Materials and methods: The DSM5 diagnostic system OUD diagnosis was made for 204 male participants. An unsupervised clustering analysis focused on the individual 11 DSM5 diagnostic criteria.

Results: Using the DSM5 diagnostic criteria, we obtained two clusters based on severity. Further, analyzing clinical information along with DSM5 criteria, two groups varying in OUD severity, presence of injecting drug use, and employment were identified.

Conclusion: Based on cluster analysis, two main clusters of DSM5 criteria emerged. Rather than DSM5 symptoms clustering with each other based on the similarity of symptomatology, they aggregate numerically reflecting severity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
46
审稿时长
39 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信