{"title":"使用GDELT映射医疗保健中的网络威胁环境:一种多方法方法。","authors":"Anna Piazza, Srinidhi Vasudevan","doi":"10.1089/hs.2024.0016","DOIUrl":null,"url":null,"abstract":"<p><p>Cyberattacks that target critical national infrastructure, such as hospitals, pose a significant threat to the safety and wellbeing of individuals, as evidenced by incidents like the WannaCry worldwide ransomware attack. To better understand vulnerabilities within the healthcare sector and develop preventive measures, it is crucial to examine the evolving nature of cyberthreats and the types of attacks occurring. In this article, we describe a multimethod approach comprising social networks analysis, natural language processing, and machine learning, using data from GDELT (Global Database of Events, Language, and Tone), to identify the prevalence of attacks on hospitals while considering the type of attack and its date. Through this approach, meaningful patterns in the evolution of cyberattacks are revealed by analyzing the relationships between emerging cyberattacks mentioned in news reports. Findings show that the number of attacks from 2017 to 2023 increased substantially, with hospitals being more prone to critical attacks such as cyberterrorism/state actor-sponsored criminal activities, advanced persistent threats, and distributed denial of service. Mapping real-time data from diverse sources using a multimethod approach, such as the framework proposed in this article, can lead to better understanding of the threat landscape. This is a crucial step in determining necessary cyberdefenses and informing the development of policy interventions to ensure the cybersecurity of critical national infrastructure.</p>","PeriodicalId":12955,"journal":{"name":"Health Security","volume":" ","pages":"186-197"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the Cyberthreat Landscape in Healthcare Using GDELT: A Multimethod Approach.\",\"authors\":\"Anna Piazza, Srinidhi Vasudevan\",\"doi\":\"10.1089/hs.2024.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyberattacks that target critical national infrastructure, such as hospitals, pose a significant threat to the safety and wellbeing of individuals, as evidenced by incidents like the WannaCry worldwide ransomware attack. To better understand vulnerabilities within the healthcare sector and develop preventive measures, it is crucial to examine the evolving nature of cyberthreats and the types of attacks occurring. In this article, we describe a multimethod approach comprising social networks analysis, natural language processing, and machine learning, using data from GDELT (Global Database of Events, Language, and Tone), to identify the prevalence of attacks on hospitals while considering the type of attack and its date. Through this approach, meaningful patterns in the evolution of cyberattacks are revealed by analyzing the relationships between emerging cyberattacks mentioned in news reports. Findings show that the number of attacks from 2017 to 2023 increased substantially, with hospitals being more prone to critical attacks such as cyberterrorism/state actor-sponsored criminal activities, advanced persistent threats, and distributed denial of service. Mapping real-time data from diverse sources using a multimethod approach, such as the framework proposed in this article, can lead to better understanding of the threat landscape. This is a crucial step in determining necessary cyberdefenses and informing the development of policy interventions to ensure the cybersecurity of critical national infrastructure.</p>\",\"PeriodicalId\":12955,\"journal\":{\"name\":\"Health Security\",\"volume\":\" \",\"pages\":\"186-197\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Security\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hs.2024.0016\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Security","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hs.2024.0016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Mapping the Cyberthreat Landscape in Healthcare Using GDELT: A Multimethod Approach.
Cyberattacks that target critical national infrastructure, such as hospitals, pose a significant threat to the safety and wellbeing of individuals, as evidenced by incidents like the WannaCry worldwide ransomware attack. To better understand vulnerabilities within the healthcare sector and develop preventive measures, it is crucial to examine the evolving nature of cyberthreats and the types of attacks occurring. In this article, we describe a multimethod approach comprising social networks analysis, natural language processing, and machine learning, using data from GDELT (Global Database of Events, Language, and Tone), to identify the prevalence of attacks on hospitals while considering the type of attack and its date. Through this approach, meaningful patterns in the evolution of cyberattacks are revealed by analyzing the relationships between emerging cyberattacks mentioned in news reports. Findings show that the number of attacks from 2017 to 2023 increased substantially, with hospitals being more prone to critical attacks such as cyberterrorism/state actor-sponsored criminal activities, advanced persistent threats, and distributed denial of service. Mapping real-time data from diverse sources using a multimethod approach, such as the framework proposed in this article, can lead to better understanding of the threat landscape. This is a crucial step in determining necessary cyberdefenses and informing the development of policy interventions to ensure the cybersecurity of critical national infrastructure.
期刊介绍:
Health Security is a peer-reviewed journal providing research and essential guidance for the protection of people’s health before and after epidemics or disasters and for ensuring that communities are resilient to major challenges. The Journal explores the issues posed by disease outbreaks and epidemics; natural disasters; biological, chemical, and nuclear accidents or deliberate threats; foodborne outbreaks; and other health emergencies. It offers important insight into how to develop the systems needed to meet these challenges. Taking an interdisciplinary approach, Health Security covers research, innovations, methods, challenges, and ethical and legal dilemmas facing scientific, military, and health organizations. The Journal is a key resource for practitioners in these fields, policymakers, scientific experts, and government officials.