内侧前额叶皮层TRPM3通道的抑制可减轻创伤性脑损伤后的强迫症症状。

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Gajendra N Pardeshi, Noor Ali, Kamini R Shirasath, Sameer N Goyal, Kartik T Nakhate, Sanjay N Awathale
{"title":"内侧前额叶皮层TRPM3通道的抑制可减轻创伤性脑损伤后的强迫症症状。","authors":"Gajendra N Pardeshi, Noor Ali, Kamini R Shirasath, Sameer N Goyal, Kartik T Nakhate, Sanjay N Awathale","doi":"10.1007/s10787-025-01763-5","DOIUrl":null,"url":null,"abstract":"<p><p>Although tumor necrosis factor-alpha (TNF-α) plays an important role in the development of obsessive-compulsive disorder (OCD), the pathogenesis remains unclear. Since transient receptor potential melastatin 3 (TRPM3) channels are activated during inflammatory conditions, crosstalk with TNF-α in the progression of OCD has not been investigated yet. We hypothesize that mild traumatic brain injury (mTBI) stimulates TRPM3 channels, thereby enhancing the level of TNF-α in the medial prefrontal cortex (mPFC), a key brain region implicated in OCD pathogenesis. The closed-head weight-drop method was used for mTBI-induced OCD in mice, and neurological assessment was carried out using rotarod and beam-walk tests. Marble-burying test, open-field test, dark-light emergence test, and nest-building behavior test were performed to examine OCD-like symptoms. The mPFC was isolated, and the TNF-α level and TRPM3 immunoreactivity were estimated using ELISA and immunohistochemistry techniques. Additionally, Golgi-Cox staining and HPLC were performed to quantify dendritic arbor and serotonin content. To validate our hypothesis, mTBI mice were treated with a selective TRPM3 inhibitor naringenin (50 mg/kg) via intraperitoneal route, and all the above parameters were screened. Marble-burying and nest-building behaviors were increased in mTBI mice. However, exploratory behavior and time spend in the light chamber were significantly reduced. Moreover, mTBI increases TNF-α concentration and TRPM3 immunoreactivity, while decreasing dendritic arbor and serotonin content. Notably, naringenin treatment reversed these behavioral, biochemical, and molecular abnormalities. Naringenin may inhibit TRPM3-mediated TNF-α production and serotonin transmission, thereby suppressing OCD symptoms. Thus, we propose a novel therapeutic approach for treating OCD associated with traumatic brain injury.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of TRPM3 channels in the medial prefrontal cortex mitigates OCD symptoms following traumatic brain injury.\",\"authors\":\"Gajendra N Pardeshi, Noor Ali, Kamini R Shirasath, Sameer N Goyal, Kartik T Nakhate, Sanjay N Awathale\",\"doi\":\"10.1007/s10787-025-01763-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although tumor necrosis factor-alpha (TNF-α) plays an important role in the development of obsessive-compulsive disorder (OCD), the pathogenesis remains unclear. Since transient receptor potential melastatin 3 (TRPM3) channels are activated during inflammatory conditions, crosstalk with TNF-α in the progression of OCD has not been investigated yet. We hypothesize that mild traumatic brain injury (mTBI) stimulates TRPM3 channels, thereby enhancing the level of TNF-α in the medial prefrontal cortex (mPFC), a key brain region implicated in OCD pathogenesis. The closed-head weight-drop method was used for mTBI-induced OCD in mice, and neurological assessment was carried out using rotarod and beam-walk tests. Marble-burying test, open-field test, dark-light emergence test, and nest-building behavior test were performed to examine OCD-like symptoms. The mPFC was isolated, and the TNF-α level and TRPM3 immunoreactivity were estimated using ELISA and immunohistochemistry techniques. Additionally, Golgi-Cox staining and HPLC were performed to quantify dendritic arbor and serotonin content. To validate our hypothesis, mTBI mice were treated with a selective TRPM3 inhibitor naringenin (50 mg/kg) via intraperitoneal route, and all the above parameters were screened. Marble-burying and nest-building behaviors were increased in mTBI mice. However, exploratory behavior and time spend in the light chamber were significantly reduced. Moreover, mTBI increases TNF-α concentration and TRPM3 immunoreactivity, while decreasing dendritic arbor and serotonin content. Notably, naringenin treatment reversed these behavioral, biochemical, and molecular abnormalities. Naringenin may inhibit TRPM3-mediated TNF-α production and serotonin transmission, thereby suppressing OCD symptoms. Thus, we propose a novel therapeutic approach for treating OCD associated with traumatic brain injury.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-025-01763-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01763-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管肿瘤坏死因子-α (TNF-α)在强迫症(OCD)的发展中起着重要作用,但其发病机制尚不清楚。由于瞬时受体电位美拉他汀3 (TRPM3)通道在炎症条件下被激活,与TNF-α在强迫症进展中的串扰尚未被研究。我们假设轻度创伤性脑损伤(mTBI)刺激TRPM3通道,从而提高内侧前额叶皮层(mPFC)中TNF-α的水平,mPFC是与强迫症发病机制有关的关键脑区域。采用闭头失重法对mtbi诱导的小鼠强迫症进行治疗,并采用旋转杆和光束行走试验进行神经学评估。采用埋弹试验、露天试验、暗光涌现试验和筑巢行为试验检测强迫症样症状。分离mPFC,采用ELISA和免疫组织化学技术检测TNF-α水平和TRPM3免疫反应性。此外,高尔基-考克斯染色和高效液相色谱法定量树突乔木和血清素含量。为了验证我们的假设,我们通过腹腔注射选择性TRPM3抑制剂柚皮素(50 mg/kg)治疗mTBI小鼠,并对上述所有参数进行筛选。mTBI小鼠的大理石掩埋和筑巢行为增加。然而,探索行为和在光室中花费的时间显着减少。此外,mTBI增加TNF-α浓度和TRPM3免疫反应性,降低树突乔木和血清素含量。值得注意的是,柚皮素治疗逆转了这些行为、生化和分子异常。柚皮素可能抑制trpm3介导的TNF-α的产生和血清素的传递,从而抑制强迫症症状。因此,我们提出了一种治疗创伤性脑损伤相关强迫症的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of TRPM3 channels in the medial prefrontal cortex mitigates OCD symptoms following traumatic brain injury.

Although tumor necrosis factor-alpha (TNF-α) plays an important role in the development of obsessive-compulsive disorder (OCD), the pathogenesis remains unclear. Since transient receptor potential melastatin 3 (TRPM3) channels are activated during inflammatory conditions, crosstalk with TNF-α in the progression of OCD has not been investigated yet. We hypothesize that mild traumatic brain injury (mTBI) stimulates TRPM3 channels, thereby enhancing the level of TNF-α in the medial prefrontal cortex (mPFC), a key brain region implicated in OCD pathogenesis. The closed-head weight-drop method was used for mTBI-induced OCD in mice, and neurological assessment was carried out using rotarod and beam-walk tests. Marble-burying test, open-field test, dark-light emergence test, and nest-building behavior test were performed to examine OCD-like symptoms. The mPFC was isolated, and the TNF-α level and TRPM3 immunoreactivity were estimated using ELISA and immunohistochemistry techniques. Additionally, Golgi-Cox staining and HPLC were performed to quantify dendritic arbor and serotonin content. To validate our hypothesis, mTBI mice were treated with a selective TRPM3 inhibitor naringenin (50 mg/kg) via intraperitoneal route, and all the above parameters were screened. Marble-burying and nest-building behaviors were increased in mTBI mice. However, exploratory behavior and time spend in the light chamber were significantly reduced. Moreover, mTBI increases TNF-α concentration and TRPM3 immunoreactivity, while decreasing dendritic arbor and serotonin content. Notably, naringenin treatment reversed these behavioral, biochemical, and molecular abnormalities. Naringenin may inhibit TRPM3-mediated TNF-α production and serotonin transmission, thereby suppressing OCD symptoms. Thus, we propose a novel therapeutic approach for treating OCD associated with traumatic brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信