Eisa Aghchehli, Milad Jabbari, Chenfei Ma, Matthew Dyson, Kianoush Nazarpour
{"title":"用于手势识别的中密度肌电臂带。","authors":"Eisa Aghchehli, Milad Jabbari, Chenfei Ma, Matthew Dyson, Kianoush Nazarpour","doi":"10.3389/fnbot.2025.1531815","DOIUrl":null,"url":null,"abstract":"<p><p>Electromyography (EMG) systems are essential for the advancement of neuroprosthetics and human-machine interfaces. However, the gap between low-density and high-density systems poses challenges to researchers in experiment design and knowledge transfer. Medium-density surface EMG systems offer a balanced alternative, providing greater spatial resolution than low-density systems while avoiding the complexity and cost of high-density arrays. In this study, we developed a research-friendly medium-density EMG system and evaluated its performance with eleven volunteers performing grasping tasks. To enhance decoding accuracy, we introduced a novel spatio-temporal convolutional neural network that integrates spatial information from additional EMG sensors with temporal dynamics. The results show that medium-density EMG sensors significantly improve classification accuracy compared to low-density systems while maintaining the same footprint. Furthermore, the proposed neural network outperforms traditional gesture decoding approaches. This work highlights the potential of medium-density EMG systems as a practical and effective solution, bridging the gap between low- and high-density systems. These findings pave the way for broader adoption in research and potential clinical applications.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1531815"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Medium density EMG armband for gesture recognition.\",\"authors\":\"Eisa Aghchehli, Milad Jabbari, Chenfei Ma, Matthew Dyson, Kianoush Nazarpour\",\"doi\":\"10.3389/fnbot.2025.1531815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electromyography (EMG) systems are essential for the advancement of neuroprosthetics and human-machine interfaces. However, the gap between low-density and high-density systems poses challenges to researchers in experiment design and knowledge transfer. Medium-density surface EMG systems offer a balanced alternative, providing greater spatial resolution than low-density systems while avoiding the complexity and cost of high-density arrays. In this study, we developed a research-friendly medium-density EMG system and evaluated its performance with eleven volunteers performing grasping tasks. To enhance decoding accuracy, we introduced a novel spatio-temporal convolutional neural network that integrates spatial information from additional EMG sensors with temporal dynamics. The results show that medium-density EMG sensors significantly improve classification accuracy compared to low-density systems while maintaining the same footprint. Furthermore, the proposed neural network outperforms traditional gesture decoding approaches. This work highlights the potential of medium-density EMG systems as a practical and effective solution, bridging the gap between low- and high-density systems. These findings pave the way for broader adoption in research and potential clinical applications.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"19 \",\"pages\":\"1531815\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2025.1531815\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1531815","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Medium density EMG armband for gesture recognition.
Electromyography (EMG) systems are essential for the advancement of neuroprosthetics and human-machine interfaces. However, the gap between low-density and high-density systems poses challenges to researchers in experiment design and knowledge transfer. Medium-density surface EMG systems offer a balanced alternative, providing greater spatial resolution than low-density systems while avoiding the complexity and cost of high-density arrays. In this study, we developed a research-friendly medium-density EMG system and evaluated its performance with eleven volunteers performing grasping tasks. To enhance decoding accuracy, we introduced a novel spatio-temporal convolutional neural network that integrates spatial information from additional EMG sensors with temporal dynamics. The results show that medium-density EMG sensors significantly improve classification accuracy compared to low-density systems while maintaining the same footprint. Furthermore, the proposed neural network outperforms traditional gesture decoding approaches. This work highlights the potential of medium-density EMG systems as a practical and effective solution, bridging the gap between low- and high-density systems. These findings pave the way for broader adoption in research and potential clinical applications.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.