通过综合生物信息学分析和机器学习识别动脉粥样硬化伴缺血性脑卒中的免疫相关中心基因。

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.3389/fneur.2025.1507855
Ming Zhang, Li-Jun Tang, Shi-Yu Long
{"title":"通过综合生物信息学分析和机器学习识别动脉粥样硬化伴缺血性脑卒中的免疫相关中心基因。","authors":"Ming Zhang, Li-Jun Tang, Shi-Yu Long","doi":"10.3389/fneur.2025.1507855","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atheroma plaques are major etiological factors in the pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical involvement of the immune microenvironment and dysregulated inflammatory responses throughout IS progression. Consequently, therapeutic strategies targeting specific immune-related markers or signaling pathways within this microenvironment hold significant promise for IS management.</p><p><strong>Methods: </strong>We integrated Weighted Gene Co-expression Network Analysis (WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to identify disease-associated modules and hub genes. Immune infiltration analysis evaluated hub gene-immune cell correlations, while protein-protein interaction (PPI) and ROC curve analyses assessed diagnostic performance.</p><p><strong>Results: </strong>Comprehensive bioinformatics analysis identified three hub genes-OAS2, TMEM106A, and ABCB1-with high prognostic value for ischemic stroke. Immune infiltration profiling revealed significant correlations between these genes and distinct immune cell populations, underscoring their roles in modulating the immune microenvironment. The diagnostic performance of the gene panel was robust, achieving an area under the curve (AUC) was calculated as 0.9404 (<i>p</i> < 0.0001; 95% CI: 0.887-0.9939) for atherosclerotic plaques, demonstrating superior accuracy compared to conventional biomarkers.</p><p><strong>Conclusion: </strong>By integrating machine learning with multi-omics bioinformatics, we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit dual diagnostic utility and may influence disease progression through immune cell modulation. Our findings provide a foundation for developing targeted therapies and biomarker-driven clinical tools.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1507855"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification immune-related hub genes in diagnosing atherosclerosis with ischemic stroke through comprehensive bioinformatics analysis and machine learning.\",\"authors\":\"Ming Zhang, Li-Jun Tang, Shi-Yu Long\",\"doi\":\"10.3389/fneur.2025.1507855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Atheroma plaques are major etiological factors in the pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical involvement of the immune microenvironment and dysregulated inflammatory responses throughout IS progression. Consequently, therapeutic strategies targeting specific immune-related markers or signaling pathways within this microenvironment hold significant promise for IS management.</p><p><strong>Methods: </strong>We integrated Weighted Gene Co-expression Network Analysis (WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to identify disease-associated modules and hub genes. Immune infiltration analysis evaluated hub gene-immune cell correlations, while protein-protein interaction (PPI) and ROC curve analyses assessed diagnostic performance.</p><p><strong>Results: </strong>Comprehensive bioinformatics analysis identified three hub genes-OAS2, TMEM106A, and ABCB1-with high prognostic value for ischemic stroke. Immune infiltration profiling revealed significant correlations between these genes and distinct immune cell populations, underscoring their roles in modulating the immune microenvironment. The diagnostic performance of the gene panel was robust, achieving an area under the curve (AUC) was calculated as 0.9404 (<i>p</i> < 0.0001; 95% CI: 0.887-0.9939) for atherosclerotic plaques, demonstrating superior accuracy compared to conventional biomarkers.</p><p><strong>Conclusion: </strong>By integrating machine learning with multi-omics bioinformatics, we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit dual diagnostic utility and may influence disease progression through immune cell modulation. Our findings provide a foundation for developing targeted therapies and biomarker-driven clinical tools.</p>\",\"PeriodicalId\":12575,\"journal\":{\"name\":\"Frontiers in Neurology\",\"volume\":\"16 \",\"pages\":\"1507855\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fneur.2025.1507855\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1507855","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:动脉粥样硬化斑块是缺血性脑卒中发病的主要病因。新出现的证据强调了免疫微环境和炎症反应失调在IS进展中的关键参与。因此,针对这种微环境中的特定免疫相关标记物或信号通路的治疗策略对IS的管理具有重要的前景。方法:综合加权基因共表达网络分析(WGCNA)、CIBERSORT和机器学习(LASSO/Random Forest),识别疾病相关模块和枢纽基因。免疫浸润分析评估中枢基因与免疫细胞的相关性,而蛋白质-蛋白质相互作用(PPI)和ROC曲线分析评估诊断性能。结果:综合生物信息学分析发现三个中心基因oas2、TMEM106A和abcb1对缺血性脑卒中具有较高的预后价值。免疫浸润分析揭示了这些基因与不同免疫细胞群之间的显著相关性,强调了它们在调节免疫微环境中的作用。该基因面板的诊断性能稳健,实现曲线下面积(AUC)计算为0.9404 (p < 0.0001;95% CI: 0.887-0.9939),与传统生物标志物相比,显示出更高的准确性。结论:通过将机器学习与多组学生物信息学相结合,我们建立了一种新的三基因标记(OAS2、TMEM106A、ABCB1),用于动脉粥样硬化和缺血性脑卒中的精确诊断。这些基因具有双重诊断功能,并可能通过免疫细胞调节影响疾病进展。我们的发现为开发靶向治疗和生物标志物驱动的临床工具提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification immune-related hub genes in diagnosing atherosclerosis with ischemic stroke through comprehensive bioinformatics analysis and machine learning.

Background: Atheroma plaques are major etiological factors in the pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical involvement of the immune microenvironment and dysregulated inflammatory responses throughout IS progression. Consequently, therapeutic strategies targeting specific immune-related markers or signaling pathways within this microenvironment hold significant promise for IS management.

Methods: We integrated Weighted Gene Co-expression Network Analysis (WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to identify disease-associated modules and hub genes. Immune infiltration analysis evaluated hub gene-immune cell correlations, while protein-protein interaction (PPI) and ROC curve analyses assessed diagnostic performance.

Results: Comprehensive bioinformatics analysis identified three hub genes-OAS2, TMEM106A, and ABCB1-with high prognostic value for ischemic stroke. Immune infiltration profiling revealed significant correlations between these genes and distinct immune cell populations, underscoring their roles in modulating the immune microenvironment. The diagnostic performance of the gene panel was robust, achieving an area under the curve (AUC) was calculated as 0.9404 (p < 0.0001; 95% CI: 0.887-0.9939) for atherosclerotic plaques, demonstrating superior accuracy compared to conventional biomarkers.

Conclusion: By integrating machine learning with multi-omics bioinformatics, we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit dual diagnostic utility and may influence disease progression through immune cell modulation. Our findings provide a foundation for developing targeted therapies and biomarker-driven clinical tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信