{"title":"深入了解吲哚-(融合)吡啶(mi)dine杂合体的体内抗肿瘤治疗潜力。","authors":"Zhi Xu, Rongqiang Li, Kexin Ding, Yiling Wang, Yafei Zhuang","doi":"10.1080/17568919.2025.2504336","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with <i>in vivo</i> antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1155-1173"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An insight into the <i>in vivo</i> antitumor therapeutic potential of indole-(fused) pyri(mi)dine hybrids.\",\"authors\":\"Zhi Xu, Rongqiang Li, Kexin Ding, Yiling Wang, Yafei Zhuang\",\"doi\":\"10.1080/17568919.2025.2504336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with <i>in vivo</i> antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1155-1173\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2504336\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2504336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
An insight into the in vivo antitumor therapeutic potential of indole-(fused) pyri(mi)dine hybrids.
Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with in vivo antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.