小分子KCNT1抑制剂的最新专利审查(2022 - 2024)。

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL
Paul K Peprah, Kyle A Emmitte
{"title":"小分子KCNT1抑制剂的最新专利审查(2022 - 2024)。","authors":"Paul K Peprah, Kyle A Emmitte","doi":"10.1080/13543776.2025.2504460","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gain-of-function mutations in KCNT1 channels has been associated with severe childhood epilepsies. KCNT1 channels are sodium activated potassium channels in the CNS involved in neuronal excitability. Substantial efforts have been made by several groups to discover novel small molecule KCNT1 inhibitors to validate this approach as a therapeutic strategy for the treatment of KCNT1-related epilepsies.</p><p><strong>Areas covered: </strong>This review focuses on 10 published international patent applications from Praxis Precision Medicine that disclose novel small molecule KCNT1 inhibitors for the treatment of KCNT1-related neurological disorders. Features of compounds that contribute to KCNT1 inhibition and published in applications between 2022 and 2024 are discussed. Applications were identified and obtained through the online database, Patentscope, provided by the World Intellectual Property Organization (WIPO) using the search term 'KCNT1 inhibitors.'</p><p><strong>Expert opinion: </strong>Tremendous progress has been made toward the discovery of small molecule inhibitors of KCNT1 channels; however, much work remains to reach a viable therapeutic. Areas of work that will be critically important include further in vivo studies for efficacy, safety, and development of PK/PD relationships. Studies to better understand the binding of known ligands and determine the structural features that govern modulation of the channel are also much needed.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-20"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An updated patent review of small molecule KCNT1 inhibitors (2022-2024).\",\"authors\":\"Paul K Peprah, Kyle A Emmitte\",\"doi\":\"10.1080/13543776.2025.2504460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Gain-of-function mutations in KCNT1 channels has been associated with severe childhood epilepsies. KCNT1 channels are sodium activated potassium channels in the CNS involved in neuronal excitability. Substantial efforts have been made by several groups to discover novel small molecule KCNT1 inhibitors to validate this approach as a therapeutic strategy for the treatment of KCNT1-related epilepsies.</p><p><strong>Areas covered: </strong>This review focuses on 10 published international patent applications from Praxis Precision Medicine that disclose novel small molecule KCNT1 inhibitors for the treatment of KCNT1-related neurological disorders. Features of compounds that contribute to KCNT1 inhibition and published in applications between 2022 and 2024 are discussed. Applications were identified and obtained through the online database, Patentscope, provided by the World Intellectual Property Organization (WIPO) using the search term 'KCNT1 inhibitors.'</p><p><strong>Expert opinion: </strong>Tremendous progress has been made toward the discovery of small molecule inhibitors of KCNT1 channels; however, much work remains to reach a viable therapeutic. Areas of work that will be critically important include further in vivo studies for efficacy, safety, and development of PK/PD relationships. Studies to better understand the binding of known ligands and determine the structural features that govern modulation of the channel are also much needed.</p>\",\"PeriodicalId\":12314,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Patents\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Patents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13543776.2025.2504460\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2025.2504460","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

KCNT1通道功能突变的增加与严重的儿童癫痫有关。KCNT1通道是中枢神经系统中与神经元兴奋性有关的钠活化钾通道。几个研究小组已经做出了大量的努力来发现新的小分子KCNT1抑制剂,以验证这种方法作为治疗KCNT1相关癫痫的治疗策略。涵盖领域:本综述集中于Praxis Precision Medicine公布的10项国际专利申请,这些专利申请披露了用于治疗KCNT1相关神经系统疾病的新型小分子KCNT1抑制剂。讨论了2022年至2024年间发表的对KCNT1有抑制作用的化合物的特征。申请是通过世界知识产权组织(WIPO)提供的在线数据库Patentscope进行鉴定和获取的,检索词为“KCNT1抑制剂”。“专家意见:KCNT1通道小分子抑制剂的发现取得了巨大进展;然而,要找到一种可行的治疗方法,还有很多工作要做。至关重要的工作领域包括进一步的体内疗效、安全性研究和PK/PD关系的发展。还需要更好地了解已知配体的结合和确定控制通道调制的结构特征的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An updated patent review of small molecule KCNT1 inhibitors (2022-2024).

Introduction: Gain-of-function mutations in KCNT1 channels has been associated with severe childhood epilepsies. KCNT1 channels are sodium activated potassium channels in the CNS involved in neuronal excitability. Substantial efforts have been made by several groups to discover novel small molecule KCNT1 inhibitors to validate this approach as a therapeutic strategy for the treatment of KCNT1-related epilepsies.

Areas covered: This review focuses on 10 published international patent applications from Praxis Precision Medicine that disclose novel small molecule KCNT1 inhibitors for the treatment of KCNT1-related neurological disorders. Features of compounds that contribute to KCNT1 inhibition and published in applications between 2022 and 2024 are discussed. Applications were identified and obtained through the online database, Patentscope, provided by the World Intellectual Property Organization (WIPO) using the search term 'KCNT1 inhibitors.'

Expert opinion: Tremendous progress has been made toward the discovery of small molecule inhibitors of KCNT1 channels; however, much work remains to reach a viable therapeutic. Areas of work that will be critically important include further in vivo studies for efficacy, safety, and development of PK/PD relationships. Studies to better understand the binding of known ligands and determine the structural features that govern modulation of the channel are also much needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信