装载si-circETS1的PLGA微球作为延迟椎间盘退变的治疗策略。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-06-01 Epub Date: 2025-05-14 DOI:10.1007/s10616-025-00768-w
Wenlei Nie, Rong Zhang, Pingfeng Xie, Min Yang, Jiaming Wu
{"title":"装载si-circETS1的PLGA微球作为延迟椎间盘退变的治疗策略。","authors":"Wenlei Nie, Rong Zhang, Pingfeng Xie, Min Yang, Jiaming Wu","doi":"10.1007/s10616-025-00768-w","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) is one of the leading causes of chronic low back pain and functional impairment, severely affecting the quality of life of patients. In recent years, circular RNA (circRNA), has gained attention for its critical role in cellular function regulation, especially its potential therapeutic effects in IDD. This study aims to elucidate the function of circETS1 in nucleus pulposus cells (NPCs) and develop a novel targeted therapeutic strategy. CircETS1, which was abnormally highly expressed in degenerated nucleus pulposus tissue, was identified through circRNA sequencing (circRNA-seq). The circular nature of circETS1 was confirmed by Sanger sequencing, RNase R digestion, and fluorescence in situ hybridization (FISH). Primary human NPCs were cultured, and the effects of regulating circETS1 on cell proliferation, apoptosis, and extracellular matrix metabolism were studied using reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and immunofluorescence. Polylactic-<i>co</i>-glycolic acid (PLGA) microspheres (MS) loaded with si-circETS1 were prepared, and their therapeutic effects were evaluated. PLGA MS loaded with si-circETS1 effectively delivered si-circETS1 to nucleus pulposus tissue in both in vitro and in vivo experiments, significantly downregulating circETS1 expression, reducing inflammation, promoting extracellular matrix synthesis and repair, and ultimately delaying the progression of IDD. Consequently, PLGA MS loaded with si-circETS1 present an innovative and promising therapeutic strategy for IDD, demonstrating strong potential for clinical application.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"99"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075713/pdf/","citationCount":"0","resultStr":"{\"title\":\"PLGA microspheres loaded with si-circETS1 as a therapeutic strategy to delay intervertebral disc degeneration.\",\"authors\":\"Wenlei Nie, Rong Zhang, Pingfeng Xie, Min Yang, Jiaming Wu\",\"doi\":\"10.1007/s10616-025-00768-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intervertebral disc degeneration (IDD) is one of the leading causes of chronic low back pain and functional impairment, severely affecting the quality of life of patients. In recent years, circular RNA (circRNA), has gained attention for its critical role in cellular function regulation, especially its potential therapeutic effects in IDD. This study aims to elucidate the function of circETS1 in nucleus pulposus cells (NPCs) and develop a novel targeted therapeutic strategy. CircETS1, which was abnormally highly expressed in degenerated nucleus pulposus tissue, was identified through circRNA sequencing (circRNA-seq). The circular nature of circETS1 was confirmed by Sanger sequencing, RNase R digestion, and fluorescence in situ hybridization (FISH). Primary human NPCs were cultured, and the effects of regulating circETS1 on cell proliferation, apoptosis, and extracellular matrix metabolism were studied using reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and immunofluorescence. Polylactic-<i>co</i>-glycolic acid (PLGA) microspheres (MS) loaded with si-circETS1 were prepared, and their therapeutic effects were evaluated. PLGA MS loaded with si-circETS1 effectively delivered si-circETS1 to nucleus pulposus tissue in both in vitro and in vivo experiments, significantly downregulating circETS1 expression, reducing inflammation, promoting extracellular matrix synthesis and repair, and ultimately delaying the progression of IDD. Consequently, PLGA MS loaded with si-circETS1 present an innovative and promising therapeutic strategy for IDD, demonstrating strong potential for clinical application.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 3\",\"pages\":\"99\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00768-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00768-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘退变(IDD)是慢性腰痛和功能障碍的主要原因之一,严重影响患者的生活质量。近年来,环状RNA (circRNA)因其在细胞功能调控中的关键作用,特别是在IDD中的潜在治疗作用而受到关注。本研究旨在阐明circETS1在髓核细胞(NPCs)中的功能,并开发一种新的靶向治疗策略。CircETS1在退行性髓核组织中异常高表达,通过circRNA测序(circRNA-seq)鉴定。通过Sanger测序、RNase R酶切和荧光原位杂交(FISH)证实了circETS1的环状性质。培养原代人NPCs,采用逆转录定量聚合酶链反应(RT-qPCR)、Western blotting、流式细胞术和免疫荧光技术研究调节circETS1对细胞增殖、凋亡和细胞外基质代谢的影响。制备了负载si-circETS1的聚乳酸-羟基乙酸(PLGA)微球,并对其治疗效果进行了评价。在体外和体内实验中,加载si-circETS1的PLGA MS有效地将si-circETS1传递到髓核组织,显著下调circETS1的表达,减轻炎症,促进细胞外基质的合成和修复,最终延缓IDD的进展。因此,装载si-circETS1的PLGA质谱为IDD提供了一种创新且有前景的治疗策略,显示出强大的临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLGA microspheres loaded with si-circETS1 as a therapeutic strategy to delay intervertebral disc degeneration.

Intervertebral disc degeneration (IDD) is one of the leading causes of chronic low back pain and functional impairment, severely affecting the quality of life of patients. In recent years, circular RNA (circRNA), has gained attention for its critical role in cellular function regulation, especially its potential therapeutic effects in IDD. This study aims to elucidate the function of circETS1 in nucleus pulposus cells (NPCs) and develop a novel targeted therapeutic strategy. CircETS1, which was abnormally highly expressed in degenerated nucleus pulposus tissue, was identified through circRNA sequencing (circRNA-seq). The circular nature of circETS1 was confirmed by Sanger sequencing, RNase R digestion, and fluorescence in situ hybridization (FISH). Primary human NPCs were cultured, and the effects of regulating circETS1 on cell proliferation, apoptosis, and extracellular matrix metabolism were studied using reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and immunofluorescence. Polylactic-co-glycolic acid (PLGA) microspheres (MS) loaded with si-circETS1 were prepared, and their therapeutic effects were evaluated. PLGA MS loaded with si-circETS1 effectively delivered si-circETS1 to nucleus pulposus tissue in both in vitro and in vivo experiments, significantly downregulating circETS1 expression, reducing inflammation, promoting extracellular matrix synthesis and repair, and ultimately delaying the progression of IDD. Consequently, PLGA MS loaded with si-circETS1 present an innovative and promising therapeutic strategy for IDD, demonstrating strong potential for clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信