{"title":"胆汁酸- fxr信号促进人类ipsc衍生类器官肝脏特征的长期维持。","authors":"Taro Shimizu, Masato Miyoshi, Sei Kakinuma, Jun Tsuchiya, Daisuke Yamane, Keiya Watakabe, Tomohiro Mochida, Kento Inada, Kaho Yamada, Kotomi Shinozaki, Ayako Sato, Shun Kaneko, Fukiko Kawai-Kitahata, Miyako Murakawa, Sayuri Nitta, Mina Nakagawa, Mamoru Watanabe, Yasuhiro Asahina, Ryuichi Okamoto","doi":"10.1016/j.celrep.2025.115675","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cells (iPSCs) can be differentiated into hepatocyte-like cells (iPS-Heps); however, maintaining the long-term proliferation and hepatic characteristics of iPS-Heps remains a challenge. In this study, we aimed to develop a human iPSC-derived hepatic organoid (iHO) culture system that effectively retains hepatic characteristics long term. Our original culture strategy, using bile acids and their receptor (farnesoid X receptor [FXR]) agonists, yielded human iHOs capable of long-term culture with a distinctive \"grape-like\" structure. Comprehensive analysis showed that these iHOs maintained hepatocyte-like phenotypes, even after multiple passages, whose gene expression profiles were consistent with those of fetal hepatocytes. In addition, the overexpression of small heterodimer partner (SHP), a downstream gene of FXR, in iHOs negatively regulated genes related to the intestine and cholangiocytes. Our data demonstrated that bile acid-FXR signaling promotes both the hepatic characteristics and proliferative potential of iHOs, offering promising potential for future applications in regenerative medicine and as a disease model.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":" ","pages":"115675"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bile acid-FXR signaling facilitates the long-term maintenance of hepatic characteristics in human iPSC-derived organoids.\",\"authors\":\"Taro Shimizu, Masato Miyoshi, Sei Kakinuma, Jun Tsuchiya, Daisuke Yamane, Keiya Watakabe, Tomohiro Mochida, Kento Inada, Kaho Yamada, Kotomi Shinozaki, Ayako Sato, Shun Kaneko, Fukiko Kawai-Kitahata, Miyako Murakawa, Sayuri Nitta, Mina Nakagawa, Mamoru Watanabe, Yasuhiro Asahina, Ryuichi Okamoto\",\"doi\":\"10.1016/j.celrep.2025.115675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cells (iPSCs) can be differentiated into hepatocyte-like cells (iPS-Heps); however, maintaining the long-term proliferation and hepatic characteristics of iPS-Heps remains a challenge. In this study, we aimed to develop a human iPSC-derived hepatic organoid (iHO) culture system that effectively retains hepatic characteristics long term. Our original culture strategy, using bile acids and their receptor (farnesoid X receptor [FXR]) agonists, yielded human iHOs capable of long-term culture with a distinctive \\\"grape-like\\\" structure. Comprehensive analysis showed that these iHOs maintained hepatocyte-like phenotypes, even after multiple passages, whose gene expression profiles were consistent with those of fetal hepatocytes. In addition, the overexpression of small heterodimer partner (SHP), a downstream gene of FXR, in iHOs negatively regulated genes related to the intestine and cholangiocytes. Our data demonstrated that bile acid-FXR signaling promotes both the hepatic characteristics and proliferative potential of iHOs, offering promising potential for future applications in regenerative medicine and as a disease model.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\" \",\"pages\":\"115675\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2025.115675\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115675","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Bile acid-FXR signaling facilitates the long-term maintenance of hepatic characteristics in human iPSC-derived organoids.
Human induced pluripotent stem cells (iPSCs) can be differentiated into hepatocyte-like cells (iPS-Heps); however, maintaining the long-term proliferation and hepatic characteristics of iPS-Heps remains a challenge. In this study, we aimed to develop a human iPSC-derived hepatic organoid (iHO) culture system that effectively retains hepatic characteristics long term. Our original culture strategy, using bile acids and their receptor (farnesoid X receptor [FXR]) agonists, yielded human iHOs capable of long-term culture with a distinctive "grape-like" structure. Comprehensive analysis showed that these iHOs maintained hepatocyte-like phenotypes, even after multiple passages, whose gene expression profiles were consistent with those of fetal hepatocytes. In addition, the overexpression of small heterodimer partner (SHP), a downstream gene of FXR, in iHOs negatively regulated genes related to the intestine and cholangiocytes. Our data demonstrated that bile acid-FXR signaling promotes both the hepatic characteristics and proliferative potential of iHOs, offering promising potential for future applications in regenerative medicine and as a disease model.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.