Yiyang Wang, Xinyi Du, Chenxi Duan, Miaomiao Wang, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun
{"title":"电针对抑郁症模型小鼠海马神经元可塑性的调节作用。","authors":"Yiyang Wang, Xinyi Du, Chenxi Duan, Miaomiao Wang, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun","doi":"10.1111/cpr.70057","DOIUrl":null,"url":null,"abstract":"<p><p>Effective treatment of depression poses a major clinical challenge, accompanied by considerable social and emotional burdens. Electroacupuncture, a non-pharmacological modality derived from traditional Chinese medicine, offers a promising alternative for depression treatment due to its safety and efficacy. However, its underlying molecular mechanisms remain unclear. In this study, a corticosterone-induced depression model in C57BL/6 mice was employed and electroacupuncture was applied to stimulate at Zusanli (ST36) acupoint. The results demonstrated that electroacupuncture effectively alleviated depression-like symptoms and restored the structural morphology and plasticity of neurons in the hippocampal CA1 region. Further analysis revealed a significant upregulation of brain-derived neurotrophic factor (BDNF) and β-type calmodulin-dependent protein kinase II (CaMKIIβ), which are associated with neuronal plasticity regulatory pathways. This study elucidates the potential molecular mechanisms by which electroacupuncture alleviates depression through the regulation of neuroplasticity, providing an experimental basis for its clinical application.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70057"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating the Plasticity of Hippocampal Neurons via Electroacupuncture in Depression Model Mice.\",\"authors\":\"Yiyang Wang, Xinyi Du, Chenxi Duan, Miaomiao Wang, Ying Zhu, Lihua Wang, Jun Hu, Yanhong Sun\",\"doi\":\"10.1111/cpr.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective treatment of depression poses a major clinical challenge, accompanied by considerable social and emotional burdens. Electroacupuncture, a non-pharmacological modality derived from traditional Chinese medicine, offers a promising alternative for depression treatment due to its safety and efficacy. However, its underlying molecular mechanisms remain unclear. In this study, a corticosterone-induced depression model in C57BL/6 mice was employed and electroacupuncture was applied to stimulate at Zusanli (ST36) acupoint. The results demonstrated that electroacupuncture effectively alleviated depression-like symptoms and restored the structural morphology and plasticity of neurons in the hippocampal CA1 region. Further analysis revealed a significant upregulation of brain-derived neurotrophic factor (BDNF) and β-type calmodulin-dependent protein kinase II (CaMKIIβ), which are associated with neuronal plasticity regulatory pathways. This study elucidates the potential molecular mechanisms by which electroacupuncture alleviates depression through the regulation of neuroplasticity, providing an experimental basis for its clinical application.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70057\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70057\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70057","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulating the Plasticity of Hippocampal Neurons via Electroacupuncture in Depression Model Mice.
Effective treatment of depression poses a major clinical challenge, accompanied by considerable social and emotional burdens. Electroacupuncture, a non-pharmacological modality derived from traditional Chinese medicine, offers a promising alternative for depression treatment due to its safety and efficacy. However, its underlying molecular mechanisms remain unclear. In this study, a corticosterone-induced depression model in C57BL/6 mice was employed and electroacupuncture was applied to stimulate at Zusanli (ST36) acupoint. The results demonstrated that electroacupuncture effectively alleviated depression-like symptoms and restored the structural morphology and plasticity of neurons in the hippocampal CA1 region. Further analysis revealed a significant upregulation of brain-derived neurotrophic factor (BDNF) and β-type calmodulin-dependent protein kinase II (CaMKIIβ), which are associated with neuronal plasticity regulatory pathways. This study elucidates the potential molecular mechanisms by which electroacupuncture alleviates depression through the regulation of neuroplasticity, providing an experimental basis for its clinical application.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.