{"title":"纳米介导的荧光开关检测表皮生长因子受体。","authors":"Xin Fu, Yuhao Wang, Wenxin Zhang, Yuepeng Yang, Jialin Zeng, Xiaodie Li, Chengyu Feng, Bin Li, Yingying Liu, Yinan Zhang, Chao Zhang, Sicong Ma","doi":"10.1111/cpr.70063","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of the epidermal growth factor receptor (EGFR) in biological specimens is essential for cancer diagnostics, drug development and therapeutic monitoring. However, real-time techniques for accurate EGFR expression monitoring are currently limited. In this study, we report the development of a novel nano detector (Cy3-Apt<sub>EGFR</sub>@BPNSs) with the capabilities of quenching and recovery to enable visual EGFR expression analysis. Cy3-Apt<sub>EGFR</sub> is a Cy3-labelled single-stranded RNA (ssRNA) that exhibits specific binding to EGFR. Black phosphorus nanosheets (BPNSs) possess the ability to adsorb Cy3-Apt<sub>EGFR</sub> via van der Waals forces, quenching its fluorescence when combined. The detection of EGFR receptors on cancer cell surfaces prompts the release of Cy3-Apt<sub>EGFR</sub> from BPNSs, a consequence of the robust binding interaction between the receptor and aptamer, thereby leading to fluorescence reinstatement. The recovered fluorescence intensity of this detector is found to be directly correlated with EGFR expression levels in cancer cells, indicating its potential for guiding tumour diagnosis and treatment. The specificity of Cy3-Apt<sub>EGFR</sub>@BPNSs further enhances its utility in detecting EGFR. More importantly, our research demonstrates that the reduction in EGFR expression levels within cancer cells corresponds to a proportional decline in fluorescence intensity, thereby facilitating precise tracking of EGFR dynamics.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70063"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-Mediated Fluorescence Switching for Epidermal Growth Factor Receptor Detection.\",\"authors\":\"Xin Fu, Yuhao Wang, Wenxin Zhang, Yuepeng Yang, Jialin Zeng, Xiaodie Li, Chengyu Feng, Bin Li, Yingying Liu, Yinan Zhang, Chao Zhang, Sicong Ma\",\"doi\":\"10.1111/cpr.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of the epidermal growth factor receptor (EGFR) in biological specimens is essential for cancer diagnostics, drug development and therapeutic monitoring. However, real-time techniques for accurate EGFR expression monitoring are currently limited. In this study, we report the development of a novel nano detector (Cy3-Apt<sub>EGFR</sub>@BPNSs) with the capabilities of quenching and recovery to enable visual EGFR expression analysis. Cy3-Apt<sub>EGFR</sub> is a Cy3-labelled single-stranded RNA (ssRNA) that exhibits specific binding to EGFR. Black phosphorus nanosheets (BPNSs) possess the ability to adsorb Cy3-Apt<sub>EGFR</sub> via van der Waals forces, quenching its fluorescence when combined. The detection of EGFR receptors on cancer cell surfaces prompts the release of Cy3-Apt<sub>EGFR</sub> from BPNSs, a consequence of the robust binding interaction between the receptor and aptamer, thereby leading to fluorescence reinstatement. The recovered fluorescence intensity of this detector is found to be directly correlated with EGFR expression levels in cancer cells, indicating its potential for guiding tumour diagnosis and treatment. The specificity of Cy3-Apt<sub>EGFR</sub>@BPNSs further enhances its utility in detecting EGFR. More importantly, our research demonstrates that the reduction in EGFR expression levels within cancer cells corresponds to a proportional decline in fluorescence intensity, thereby facilitating precise tracking of EGFR dynamics.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70063\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70063\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Nano-Mediated Fluorescence Switching for Epidermal Growth Factor Receptor Detection.
Identification of the epidermal growth factor receptor (EGFR) in biological specimens is essential for cancer diagnostics, drug development and therapeutic monitoring. However, real-time techniques for accurate EGFR expression monitoring are currently limited. In this study, we report the development of a novel nano detector (Cy3-AptEGFR@BPNSs) with the capabilities of quenching and recovery to enable visual EGFR expression analysis. Cy3-AptEGFR is a Cy3-labelled single-stranded RNA (ssRNA) that exhibits specific binding to EGFR. Black phosphorus nanosheets (BPNSs) possess the ability to adsorb Cy3-AptEGFR via van der Waals forces, quenching its fluorescence when combined. The detection of EGFR receptors on cancer cell surfaces prompts the release of Cy3-AptEGFR from BPNSs, a consequence of the robust binding interaction between the receptor and aptamer, thereby leading to fluorescence reinstatement. The recovered fluorescence intensity of this detector is found to be directly correlated with EGFR expression levels in cancer cells, indicating its potential for guiding tumour diagnosis and treatment. The specificity of Cy3-AptEGFR@BPNSs further enhances its utility in detecting EGFR. More importantly, our research demonstrates that the reduction in EGFR expression levels within cancer cells corresponds to a proportional decline in fluorescence intensity, thereby facilitating precise tracking of EGFR dynamics.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.