建立基于多组学数据的预测结直肠癌复发和转移的数学模型。

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Bing Li, Ming Xiao, Rong Zeng, Le Zhang
{"title":"建立基于多组学数据的预测结直肠癌复发和转移的数学模型。","authors":"Bing Li, Ming Xiao, Rong Zeng, Le Zhang","doi":"10.1186/s12911-025-03012-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer is the fourth most deadly cancer, with a high mortality rate and a high probability of recurrence and metastasis. Since continuous examinations and disease monitoring for patients after surgery are currently difficult to perform, it is necessary for us to develop a predictive model for colorectal cancer metastasis and recurrence to improve the survival rate of patients.</p><p><strong>Results: </strong>Previous studies mostly used only clinical or radiological data, which are not sufficient to explain the in-depth mechanism of colorectal cancer recurrence and metastasis. Therefore, this study proposes such a multiomics data-based predictive model for the recurrence and metastasis of colorectal cancer. LR, SVM, Naïve-bayes and ensemble learning models are used to build this predictive model.</p><p><strong>Conclusions: </strong>The experimental results indicate that our proposed multiomics data-based ensemble learning model effectively predicts the recurrence and metastasis of colorectal cancer.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 Suppl 2","pages":"188"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing a multiomics data-based mathematical model to predict colorectal cancer recurrence and metastasis.\",\"authors\":\"Bing Li, Ming Xiao, Rong Zeng, Le Zhang\",\"doi\":\"10.1186/s12911-025-03012-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colorectal cancer is the fourth most deadly cancer, with a high mortality rate and a high probability of recurrence and metastasis. Since continuous examinations and disease monitoring for patients after surgery are currently difficult to perform, it is necessary for us to develop a predictive model for colorectal cancer metastasis and recurrence to improve the survival rate of patients.</p><p><strong>Results: </strong>Previous studies mostly used only clinical or radiological data, which are not sufficient to explain the in-depth mechanism of colorectal cancer recurrence and metastasis. Therefore, this study proposes such a multiomics data-based predictive model for the recurrence and metastasis of colorectal cancer. LR, SVM, Naïve-bayes and ensemble learning models are used to build this predictive model.</p><p><strong>Conclusions: </strong>The experimental results indicate that our proposed multiomics data-based ensemble learning model effectively predicts the recurrence and metastasis of colorectal cancer.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"25 Suppl 2\",\"pages\":\"188\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-025-03012-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03012-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:结直肠癌是全球第四大致命癌症,死亡率高,复发转移概率高。由于目前难以对术后患者进行持续检查和疾病监测,因此我们有必要建立一种预测结直肠癌转移和复发的模型,以提高患者的生存率。结果:以往研究多采用临床或影像学资料,不足以深入解释结直肠癌复发转移的机制。因此,本研究提出了这样一个基于多组学数据的结直肠癌复发转移预测模型。使用LR、SVM、Naïve-bayes和集成学习模型构建该预测模型。结论:实验结果表明,基于多组学数据的集成学习模型能够有效预测结直肠癌的复发和转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a multiomics data-based mathematical model to predict colorectal cancer recurrence and metastasis.

Background: Colorectal cancer is the fourth most deadly cancer, with a high mortality rate and a high probability of recurrence and metastasis. Since continuous examinations and disease monitoring for patients after surgery are currently difficult to perform, it is necessary for us to develop a predictive model for colorectal cancer metastasis and recurrence to improve the survival rate of patients.

Results: Previous studies mostly used only clinical or radiological data, which are not sufficient to explain the in-depth mechanism of colorectal cancer recurrence and metastasis. Therefore, this study proposes such a multiomics data-based predictive model for the recurrence and metastasis of colorectal cancer. LR, SVM, Naïve-bayes and ensemble learning models are used to build this predictive model.

Conclusions: The experimental results indicate that our proposed multiomics data-based ensemble learning model effectively predicts the recurrence and metastasis of colorectal cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信