Nahuel N Foressi, Leandro Cruz Rodríguez, M Soledad Celej
{"title":"液液相分离Tau蛋白和α-突触核蛋白:治疗神经退行性疾病的新靶点。","authors":"Nahuel N Foressi, Leandro Cruz Rodríguez, M Soledad Celej","doi":"10.1007/s12551-024-01259-6","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's and Parkinson's diseases are the most common neurodegenerative disorders, causing significant disability and mortality worldwide. Though traditionally classified as Tau and α-synuclein-related disorders, respectively, there is growing evidence of clinical overlap between dementia and Parkinsonism, with comorbidity worsening cognitive impairment and prognosis. Emerging research on liquid-liquid phase separation (LLPS) offers promising insights into novel treatments of these proteinopathies by targeting the phase behavior of the disease-associated proteins. Thus, manipulating condensates has become a focus for developing new therapeutic compounds, termed condensate-modifying drugs (c-mods), by which historically considered undruggable proteins can be targeted. This review offers an overview of bioactive molecules that act as modifiers of Tau and α-synuclein condensates through various mechanisms. The goal is to lay the groundwork for discovering new therapeutic approaches to prevent harmful protein aggregation and treat comorbidity in tau and synucleinopathies.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"491-498"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075074/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liquid-liquid phase separation of Tau and α-synuclein: a new target for treating comorbidity in neurodegeneration.\",\"authors\":\"Nahuel N Foressi, Leandro Cruz Rodríguez, M Soledad Celej\",\"doi\":\"10.1007/s12551-024-01259-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's and Parkinson's diseases are the most common neurodegenerative disorders, causing significant disability and mortality worldwide. Though traditionally classified as Tau and α-synuclein-related disorders, respectively, there is growing evidence of clinical overlap between dementia and Parkinsonism, with comorbidity worsening cognitive impairment and prognosis. Emerging research on liquid-liquid phase separation (LLPS) offers promising insights into novel treatments of these proteinopathies by targeting the phase behavior of the disease-associated proteins. Thus, manipulating condensates has become a focus for developing new therapeutic compounds, termed condensate-modifying drugs (c-mods), by which historically considered undruggable proteins can be targeted. This review offers an overview of bioactive molecules that act as modifiers of Tau and α-synuclein condensates through various mechanisms. The goal is to lay the groundwork for discovering new therapeutic approaches to prevent harmful protein aggregation and treat comorbidity in tau and synucleinopathies.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"491-498\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075074/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-024-01259-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01259-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Liquid-liquid phase separation of Tau and α-synuclein: a new target for treating comorbidity in neurodegeneration.
Alzheimer's and Parkinson's diseases are the most common neurodegenerative disorders, causing significant disability and mortality worldwide. Though traditionally classified as Tau and α-synuclein-related disorders, respectively, there is growing evidence of clinical overlap between dementia and Parkinsonism, with comorbidity worsening cognitive impairment and prognosis. Emerging research on liquid-liquid phase separation (LLPS) offers promising insights into novel treatments of these proteinopathies by targeting the phase behavior of the disease-associated proteins. Thus, manipulating condensates has become a focus for developing new therapeutic compounds, termed condensate-modifying drugs (c-mods), by which historically considered undruggable proteins can be targeted. This review offers an overview of bioactive molecules that act as modifiers of Tau and α-synuclein condensates through various mechanisms. The goal is to lay the groundwork for discovering new therapeutic approaches to prevent harmful protein aggregation and treat comorbidity in tau and synucleinopathies.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation