Ana G Sánchez, Adriana Gabrielli, Deborah J Keszenman
{"title":"生态紫外线辐射对核DNA光化学的影响。","authors":"Ana G Sánchez, Adriana Gabrielli, Deborah J Keszenman","doi":"10.1007/s12551-025-01275-0","DOIUrl":null,"url":null,"abstract":"<p><p>Solar radiation is predominantly Earth's natural ultraviolet (UV) radiation source. The biological effects of UV radiation have been the subject of scientific interest for decades. The most frequent and abundant types of DNA damage comprise the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone (6-4PP) photoproducts. Upon UVA excitation, the 6-4PPs may undergo an intramolecular 4<i>π</i> electrocyclization of the pyrimidone ring, arising photolesions known as Dewar isomers. The photochemistry pathways of UVA/UVB-induced DNA damage are discussed. Photosensitization-mediated reactions have traditionally been categorized as either oxygen-independent or oxygen-dependent. In oxygen-independent processes, the underlying mechanism involves triplet-triplet energy transfer. Among the reactive oxygen species (ROS) generated by UV radiation (<sup>1</sup>O<sub>2</sub>, O<sub>2</sub> <sup>•-</sup>, <sup>•</sup>OH, H₂O₂), singlet oxygen (<sup>1</sup>O₂) is highly reactive and a primary contributor to oxidative DNA damage in cells and human skin following UVA exposure, as observed in the production of 8-oxoguanine (8-OxoG). The exposure of melanocytes to UV radiation upregulates nitric oxide synthase (NOS) and NADPH oxidase (NOX), producing nitric oxide and superoxide, which recombine to produce peroxynitrite. This highly oxidizing species is responsible for melanin chemiexcitation, producing carbonyl products that transfer energy to the DNA molecule to produce CPDs in the dark several hours after UV exposure ends. The peroxynitrite generated could also lead to other types of DNA damage, such as the formation of 8-nitroguanine (8-NitroG), which requires further study.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"537-545"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of ecological UV radiation on the photochemistry of nuclear DNA.\",\"authors\":\"Ana G Sánchez, Adriana Gabrielli, Deborah J Keszenman\",\"doi\":\"10.1007/s12551-025-01275-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar radiation is predominantly Earth's natural ultraviolet (UV) radiation source. The biological effects of UV radiation have been the subject of scientific interest for decades. The most frequent and abundant types of DNA damage comprise the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone (6-4PP) photoproducts. Upon UVA excitation, the 6-4PPs may undergo an intramolecular 4<i>π</i> electrocyclization of the pyrimidone ring, arising photolesions known as Dewar isomers. The photochemistry pathways of UVA/UVB-induced DNA damage are discussed. Photosensitization-mediated reactions have traditionally been categorized as either oxygen-independent or oxygen-dependent. In oxygen-independent processes, the underlying mechanism involves triplet-triplet energy transfer. Among the reactive oxygen species (ROS) generated by UV radiation (<sup>1</sup>O<sub>2</sub>, O<sub>2</sub> <sup>•-</sup>, <sup>•</sup>OH, H₂O₂), singlet oxygen (<sup>1</sup>O₂) is highly reactive and a primary contributor to oxidative DNA damage in cells and human skin following UVA exposure, as observed in the production of 8-oxoguanine (8-OxoG). The exposure of melanocytes to UV radiation upregulates nitric oxide synthase (NOS) and NADPH oxidase (NOX), producing nitric oxide and superoxide, which recombine to produce peroxynitrite. This highly oxidizing species is responsible for melanin chemiexcitation, producing carbonyl products that transfer energy to the DNA molecule to produce CPDs in the dark several hours after UV exposure ends. The peroxynitrite generated could also lead to other types of DNA damage, such as the formation of 8-nitroguanine (8-NitroG), which requires further study.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"537-545\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01275-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01275-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Impact of ecological UV radiation on the photochemistry of nuclear DNA.
Solar radiation is predominantly Earth's natural ultraviolet (UV) radiation source. The biological effects of UV radiation have been the subject of scientific interest for decades. The most frequent and abundant types of DNA damage comprise the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone (6-4PP) photoproducts. Upon UVA excitation, the 6-4PPs may undergo an intramolecular 4π electrocyclization of the pyrimidone ring, arising photolesions known as Dewar isomers. The photochemistry pathways of UVA/UVB-induced DNA damage are discussed. Photosensitization-mediated reactions have traditionally been categorized as either oxygen-independent or oxygen-dependent. In oxygen-independent processes, the underlying mechanism involves triplet-triplet energy transfer. Among the reactive oxygen species (ROS) generated by UV radiation (1O2, O2•-, •OH, H₂O₂), singlet oxygen (1O₂) is highly reactive and a primary contributor to oxidative DNA damage in cells and human skin following UVA exposure, as observed in the production of 8-oxoguanine (8-OxoG). The exposure of melanocytes to UV radiation upregulates nitric oxide synthase (NOS) and NADPH oxidase (NOX), producing nitric oxide and superoxide, which recombine to produce peroxynitrite. This highly oxidizing species is responsible for melanin chemiexcitation, producing carbonyl products that transfer energy to the DNA molecule to produce CPDs in the dark several hours after UV exposure ends. The peroxynitrite generated could also lead to other types of DNA damage, such as the formation of 8-nitroguanine (8-NitroG), which requires further study.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation