Nicolás Fuentes-Ugarte, Martin Pereira-Silva, Isaac Cortes-Rubilar, Gabriel Vallejos-Baccelliere, Victoria Guixé, Victor Castro-Fernandez
{"title":"酶的功能是如何进化的:基因、结构和动力学的观点。","authors":"Nicolás Fuentes-Ugarte, Martin Pereira-Silva, Isaac Cortes-Rubilar, Gabriel Vallejos-Baccelliere, Victoria Guixé, Victor Castro-Fernandez","doi":"10.1007/s12551-025-01314-w","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the emergence or loss of enzyme functions comprises several approaches, such as genetic, structural, and kinetic studies. Promiscuous enzyme activities have been proposed as starting points for the emergence of novel enzyme functions, for example, through genetic models such as neofunctionalization and subfunctionalization. In both cases, neutral evolution would fix gene redundancy, critical in relaxing functional constraints and allowing specific mutations to drive innovation. The evolution of enzyme activities has a structural basis, with genetic mutations modifying the active site architecture, conformational dynamics, or interaction networks, which leads to the creation, enhancement, or restriction of enzyme functions where epistatic interactions are crucial. These structural changes impact the described kinetic mechanisms like ground-state stabilization (affinity), transition-state stabilization (catalysis), or a combination of both. Case studies across diverse enzyme families illustrate these principles, emphasizing the interplay between genetic, structural, and kinetic approaches. Finally, we discuss the importance of understanding evolutionary mechanisms and their impact on protein engineering and drug design for biomedical and industrial applications. However, these studies highlight that further experimental evolutionary data collection is necessary to enable the training of advanced machine learning models for use in biotechnological applications.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"467-478"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075042/pdf/","citationCount":"0","resultStr":"{\"title\":\"How enzyme functions evolve: genetic, structural, and kinetic perspectives.\",\"authors\":\"Nicolás Fuentes-Ugarte, Martin Pereira-Silva, Isaac Cortes-Rubilar, Gabriel Vallejos-Baccelliere, Victoria Guixé, Victor Castro-Fernandez\",\"doi\":\"10.1007/s12551-025-01314-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the emergence or loss of enzyme functions comprises several approaches, such as genetic, structural, and kinetic studies. Promiscuous enzyme activities have been proposed as starting points for the emergence of novel enzyme functions, for example, through genetic models such as neofunctionalization and subfunctionalization. In both cases, neutral evolution would fix gene redundancy, critical in relaxing functional constraints and allowing specific mutations to drive innovation. The evolution of enzyme activities has a structural basis, with genetic mutations modifying the active site architecture, conformational dynamics, or interaction networks, which leads to the creation, enhancement, or restriction of enzyme functions where epistatic interactions are crucial. These structural changes impact the described kinetic mechanisms like ground-state stabilization (affinity), transition-state stabilization (catalysis), or a combination of both. Case studies across diverse enzyme families illustrate these principles, emphasizing the interplay between genetic, structural, and kinetic approaches. Finally, we discuss the importance of understanding evolutionary mechanisms and their impact on protein engineering and drug design for biomedical and industrial applications. However, these studies highlight that further experimental evolutionary data collection is necessary to enable the training of advanced machine learning models for use in biotechnological applications.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"467-478\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01314-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01314-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
How enzyme functions evolve: genetic, structural, and kinetic perspectives.
Understanding the emergence or loss of enzyme functions comprises several approaches, such as genetic, structural, and kinetic studies. Promiscuous enzyme activities have been proposed as starting points for the emergence of novel enzyme functions, for example, through genetic models such as neofunctionalization and subfunctionalization. In both cases, neutral evolution would fix gene redundancy, critical in relaxing functional constraints and allowing specific mutations to drive innovation. The evolution of enzyme activities has a structural basis, with genetic mutations modifying the active site architecture, conformational dynamics, or interaction networks, which leads to the creation, enhancement, or restriction of enzyme functions where epistatic interactions are crucial. These structural changes impact the described kinetic mechanisms like ground-state stabilization (affinity), transition-state stabilization (catalysis), or a combination of both. Case studies across diverse enzyme families illustrate these principles, emphasizing the interplay between genetic, structural, and kinetic approaches. Finally, we discuss the importance of understanding evolutionary mechanisms and their impact on protein engineering and drug design for biomedical and industrial applications. However, these studies highlight that further experimental evolutionary data collection is necessary to enable the training of advanced machine learning models for use in biotechnological applications.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation