Paolo De Pasquale, Mirjam Bonanno, Cristiano De Marchis, Luca Pergolizzi, Antonino Lombardo Facciale, Giuseppe Paladina, Maria Grazia Maggio, Federica Impellizzeri, Irene Ciancarelli, Angelo Quartarone, Rocco Salvatore Calabrò
{"title":"超越临床尺度:帕金森病患者的仪器步态分析和生物力学模式的观察性研究。","authors":"Paolo De Pasquale, Mirjam Bonanno, Cristiano De Marchis, Luca Pergolizzi, Antonino Lombardo Facciale, Giuseppe Paladina, Maria Grazia Maggio, Federica Impellizzeri, Irene Ciancarelli, Angelo Quartarone, Rocco Salvatore Calabrò","doi":"10.3389/fbioe.2025.1541240","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Parkinson's disease (PD), a common neurodegenerative disorder affecting motor functions, is associated with abnormal gait patterns characterized by altered kinematic, kinetic, and electrophysiological parameters. This observational study aims to instrumentally identify and quantify these gait dysfunctions in PD patients compared to normal values from healthy subjects.</p><p><strong>Methods: </strong>Sixty-nine PD patients underwent clinical and instrumental evaluations to assess gait. Demographic and clinical data were collected before motor assessment. Clinical scales evaluated the level of impairment, gait, balance, risk of falls and ability to complete activities of daily living. Instrumental evaluations were conducted using optoelectronic, force plates and electromyographic (EMG) systems in a motion analysis laboratory. Statistical analysis involved a non-parametric test to compare pathological and normal data, clustering methods to identify groups based on clinical evaluations, and a combination of non-parametric analysis and linear models to assess dependencies on clinical scales.</p><p><strong>Results: </strong>The results showed that PD patients had significant gait kinematic differences compared to normal values, with increased temporal and shortened spatial parameters. In addition, PD patients were grouped into four clusters based on clinical scales. While some gait features were influenced by clinical scales reflecting impairment, gait and balance, and independence, others were more affected by the perceived fear of falling (FoF).</p><p><strong>Discussion: </strong>In conclusion, the study identified specific biomechanical gait dysfunctions in kinematic, kinetic, and electrophysiological parameters in PD patients, undetectable by standard clinical scales. Additionally, higher FoF was associated with dysfunctional biomechanical patterns, independent of impairment severity, gait and balance dysfunction, or overall independence.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1541240"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond clinical scales: an observational study on instrumental gait analysis and biomechanical patterns in patients with Parkinson's disease.\",\"authors\":\"Paolo De Pasquale, Mirjam Bonanno, Cristiano De Marchis, Luca Pergolizzi, Antonino Lombardo Facciale, Giuseppe Paladina, Maria Grazia Maggio, Federica Impellizzeri, Irene Ciancarelli, Angelo Quartarone, Rocco Salvatore Calabrò\",\"doi\":\"10.3389/fbioe.2025.1541240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Parkinson's disease (PD), a common neurodegenerative disorder affecting motor functions, is associated with abnormal gait patterns characterized by altered kinematic, kinetic, and electrophysiological parameters. This observational study aims to instrumentally identify and quantify these gait dysfunctions in PD patients compared to normal values from healthy subjects.</p><p><strong>Methods: </strong>Sixty-nine PD patients underwent clinical and instrumental evaluations to assess gait. Demographic and clinical data were collected before motor assessment. Clinical scales evaluated the level of impairment, gait, balance, risk of falls and ability to complete activities of daily living. Instrumental evaluations were conducted using optoelectronic, force plates and electromyographic (EMG) systems in a motion analysis laboratory. Statistical analysis involved a non-parametric test to compare pathological and normal data, clustering methods to identify groups based on clinical evaluations, and a combination of non-parametric analysis and linear models to assess dependencies on clinical scales.</p><p><strong>Results: </strong>The results showed that PD patients had significant gait kinematic differences compared to normal values, with increased temporal and shortened spatial parameters. In addition, PD patients were grouped into four clusters based on clinical scales. While some gait features were influenced by clinical scales reflecting impairment, gait and balance, and independence, others were more affected by the perceived fear of falling (FoF).</p><p><strong>Discussion: </strong>In conclusion, the study identified specific biomechanical gait dysfunctions in kinematic, kinetic, and electrophysiological parameters in PD patients, undetectable by standard clinical scales. Additionally, higher FoF was associated with dysfunctional biomechanical patterns, independent of impairment severity, gait and balance dysfunction, or overall independence.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1541240\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1541240\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1541240","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Beyond clinical scales: an observational study on instrumental gait analysis and biomechanical patterns in patients with Parkinson's disease.
Introduction: Parkinson's disease (PD), a common neurodegenerative disorder affecting motor functions, is associated with abnormal gait patterns characterized by altered kinematic, kinetic, and electrophysiological parameters. This observational study aims to instrumentally identify and quantify these gait dysfunctions in PD patients compared to normal values from healthy subjects.
Methods: Sixty-nine PD patients underwent clinical and instrumental evaluations to assess gait. Demographic and clinical data were collected before motor assessment. Clinical scales evaluated the level of impairment, gait, balance, risk of falls and ability to complete activities of daily living. Instrumental evaluations were conducted using optoelectronic, force plates and electromyographic (EMG) systems in a motion analysis laboratory. Statistical analysis involved a non-parametric test to compare pathological and normal data, clustering methods to identify groups based on clinical evaluations, and a combination of non-parametric analysis and linear models to assess dependencies on clinical scales.
Results: The results showed that PD patients had significant gait kinematic differences compared to normal values, with increased temporal and shortened spatial parameters. In addition, PD patients were grouped into four clusters based on clinical scales. While some gait features were influenced by clinical scales reflecting impairment, gait and balance, and independence, others were more affected by the perceived fear of falling (FoF).
Discussion: In conclusion, the study identified specific biomechanical gait dysfunctions in kinematic, kinetic, and electrophysiological parameters in PD patients, undetectable by standard clinical scales. Additionally, higher FoF was associated with dysfunctional biomechanical patterns, independent of impairment severity, gait and balance dysfunction, or overall independence.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.