Alvaro A Recoulat Angelini, Leonel Malacrida, F Luis González Flecha
{"title":"荧光相量分析:基本原理及其生物物理应用。","authors":"Alvaro A Recoulat Angelini, Leonel Malacrida, F Luis González Flecha","doi":"10.1007/s12551-025-01293-y","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence is one of the most widely used techniques in biological sciences. Its exceptional sensitivity and versatility make it a tool of first choice for quantitative studies in biophysics. The concept of phasors, originally introduced by Charles Steinmetz in the late nineteenth century for analyzing alternating current circuits, has since found applications across diverse disciplines, including fluorescence spectroscopy. The main idea behind fluorescence phasors was posited by Gregorio Weber in 1981. By analyzing the complementary nature of pulse and phase fluorometry data, he shows that two magnitudes-denoted as G and S-derived from the frequency-domain fluorescence measurements correspond to the real and imaginary parts of the Fourier transform of the fluorescence intensity in the time domain. This review provides a historical perspective on how the concept of phasors originates and how it integrates into fluorescence spectroscopy. We discuss their fundamental algebraic properties, which enable intuitive model-free analysis of fluorescence data despite the complexity of the underlying phenomena. Some applications in molecular biophysics illustrate the power of this approach in studying diverse phenomena, including protein folding, protein interactions, phase transitions in lipid mixtures, and formation of high-order structures in nucleic acids.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"395-408"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluorescence phasor analysis: basic principles and biophysical applications.\",\"authors\":\"Alvaro A Recoulat Angelini, Leonel Malacrida, F Luis González Flecha\",\"doi\":\"10.1007/s12551-025-01293-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence is one of the most widely used techniques in biological sciences. Its exceptional sensitivity and versatility make it a tool of first choice for quantitative studies in biophysics. The concept of phasors, originally introduced by Charles Steinmetz in the late nineteenth century for analyzing alternating current circuits, has since found applications across diverse disciplines, including fluorescence spectroscopy. The main idea behind fluorescence phasors was posited by Gregorio Weber in 1981. By analyzing the complementary nature of pulse and phase fluorometry data, he shows that two magnitudes-denoted as G and S-derived from the frequency-domain fluorescence measurements correspond to the real and imaginary parts of the Fourier transform of the fluorescence intensity in the time domain. This review provides a historical perspective on how the concept of phasors originates and how it integrates into fluorescence spectroscopy. We discuss their fundamental algebraic properties, which enable intuitive model-free analysis of fluorescence data despite the complexity of the underlying phenomena. Some applications in molecular biophysics illustrate the power of this approach in studying diverse phenomena, including protein folding, protein interactions, phase transitions in lipid mixtures, and formation of high-order structures in nucleic acids.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"395-408\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01293-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01293-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Fluorescence phasor analysis: basic principles and biophysical applications.
Fluorescence is one of the most widely used techniques in biological sciences. Its exceptional sensitivity and versatility make it a tool of first choice for quantitative studies in biophysics. The concept of phasors, originally introduced by Charles Steinmetz in the late nineteenth century for analyzing alternating current circuits, has since found applications across diverse disciplines, including fluorescence spectroscopy. The main idea behind fluorescence phasors was posited by Gregorio Weber in 1981. By analyzing the complementary nature of pulse and phase fluorometry data, he shows that two magnitudes-denoted as G and S-derived from the frequency-domain fluorescence measurements correspond to the real and imaginary parts of the Fourier transform of the fluorescence intensity in the time domain. This review provides a historical perspective on how the concept of phasors originates and how it integrates into fluorescence spectroscopy. We discuss their fundamental algebraic properties, which enable intuitive model-free analysis of fluorescence data despite the complexity of the underlying phenomena. Some applications in molecular biophysics illustrate the power of this approach in studying diverse phenomena, including protein folding, protein interactions, phase transitions in lipid mixtures, and formation of high-order structures in nucleic acids.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation