João V A Lima, Weslley F Oliveira, Abdênego R Silva, Francisco P T Melo, Martha S Ribeiro, Paulo E Cabral Filho, Adriana Fontes
{"title":"与量子点结合的凝集素的亮度。","authors":"João V A Lima, Weslley F Oliveira, Abdênego R Silva, Francisco P T Melo, Martha S Ribeiro, Paulo E Cabral Filho, Adriana Fontes","doi":"10.1007/s12551-025-01283-0","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main focuses of glycobiology is investigating the synthesis and modification of carbohydrates in biological systems, due to their involvement in various processes such as cell recognition, differentiation, and immune response. Since the study of these glycans contributes to the understanding of complex biological functions, these biochemical compounds can be analyzed using lectins, which are ubiquitous proteins in nature capable of specifically recognizing carbohydrates. In addition, lectin-carbohydrate interaction can be visualized by conjugating these proteins with quantum dots (QDs), which are fluorescent nanoprobes with advantageous properties, including photostability and size-tunable emission. QDs also possess chemically active surfaces that enable the attachment of biomolecules, such as lectins. In this review, we provide detailed reports of studies involving QD-lectin conjugates conducted by the Biomedical Nanotechnology Group at the Federal University of Pernambuco (UFPE/Brazil) and its collaborators. An integrated perspective on the use of QD-lectin conjugates to study saccharides in a range of biological systems, from bacteria and fungi to red blood cells and cancer tissues, is also presented. We hope this comprehensive review inspires further studies exploring the brightness of lectins upon conjugation with QDs to unravel glycobiological processes.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"419-434"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075083/pdf/","citationCount":"0","resultStr":"{\"title\":\"The brightness of lectins conjugated to quantum dots.\",\"authors\":\"João V A Lima, Weslley F Oliveira, Abdênego R Silva, Francisco P T Melo, Martha S Ribeiro, Paulo E Cabral Filho, Adriana Fontes\",\"doi\":\"10.1007/s12551-025-01283-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the main focuses of glycobiology is investigating the synthesis and modification of carbohydrates in biological systems, due to their involvement in various processes such as cell recognition, differentiation, and immune response. Since the study of these glycans contributes to the understanding of complex biological functions, these biochemical compounds can be analyzed using lectins, which are ubiquitous proteins in nature capable of specifically recognizing carbohydrates. In addition, lectin-carbohydrate interaction can be visualized by conjugating these proteins with quantum dots (QDs), which are fluorescent nanoprobes with advantageous properties, including photostability and size-tunable emission. QDs also possess chemically active surfaces that enable the attachment of biomolecules, such as lectins. In this review, we provide detailed reports of studies involving QD-lectin conjugates conducted by the Biomedical Nanotechnology Group at the Federal University of Pernambuco (UFPE/Brazil) and its collaborators. An integrated perspective on the use of QD-lectin conjugates to study saccharides in a range of biological systems, from bacteria and fungi to red blood cells and cancer tissues, is also presented. We hope this comprehensive review inspires further studies exploring the brightness of lectins upon conjugation with QDs to unravel glycobiological processes.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"419-434\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075083/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01283-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01283-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
The brightness of lectins conjugated to quantum dots.
One of the main focuses of glycobiology is investigating the synthesis and modification of carbohydrates in biological systems, due to their involvement in various processes such as cell recognition, differentiation, and immune response. Since the study of these glycans contributes to the understanding of complex biological functions, these biochemical compounds can be analyzed using lectins, which are ubiquitous proteins in nature capable of specifically recognizing carbohydrates. In addition, lectin-carbohydrate interaction can be visualized by conjugating these proteins with quantum dots (QDs), which are fluorescent nanoprobes with advantageous properties, including photostability and size-tunable emission. QDs also possess chemically active surfaces that enable the attachment of biomolecules, such as lectins. In this review, we provide detailed reports of studies involving QD-lectin conjugates conducted by the Biomedical Nanotechnology Group at the Federal University of Pernambuco (UFPE/Brazil) and its collaborators. An integrated perspective on the use of QD-lectin conjugates to study saccharides in a range of biological systems, from bacteria and fungi to red blood cells and cancer tissues, is also presented. We hope this comprehensive review inspires further studies exploring the brightness of lectins upon conjugation with QDs to unravel glycobiological processes.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation