{"title":"手性转移到纳米晶体的肽模板和圆偏振光。","authors":"Marcelo Yudi Icimoto, Vitor Oliveira, Iseli Lourenço Nantes","doi":"10.1007/s12551-025-01278-x","DOIUrl":null,"url":null,"abstract":"<p><p>Since the early advent of nanotechnology, proteins, peptides, and amino acids have frequently been used to synthesize and stabilize metallic and ceramic nanoparticles. Also, several signaling peptides and enzymes have the activity modulated by the association with nanostructured particles and films. Lately, with the discovery of giant magnetoresistance and chiral-induced spin selectivity, an innovative nanotechnological use of amino acids and proteins emerged. Enantiomeric pairs of amino acids, peptides, and other biomolecules have been used as templates for growing chiral distorted nanocrystals and for chiral functionalization of achiral nanoparticles. More recently, circularly polarized light has been raised as an alternative for synthesizing enantiomeric pairs of plasmonic nanocrystals on anisotropic seeds. These chiral nanostructured materials exhibit unique properties with applications in biological and technological fields harnessed in various applications, including biosensing, asymmetric catalysis, and optical devices. This review presents the experimental strategies and mechanisms of chirality transfer to plasmonic and ceramic nanoparticles using peptide templates and circularly polarized light.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"409-417"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chirality transfer to nanocrystals by peptide templates and circularly polarized light.\",\"authors\":\"Marcelo Yudi Icimoto, Vitor Oliveira, Iseli Lourenço Nantes\",\"doi\":\"10.1007/s12551-025-01278-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the early advent of nanotechnology, proteins, peptides, and amino acids have frequently been used to synthesize and stabilize metallic and ceramic nanoparticles. Also, several signaling peptides and enzymes have the activity modulated by the association with nanostructured particles and films. Lately, with the discovery of giant magnetoresistance and chiral-induced spin selectivity, an innovative nanotechnological use of amino acids and proteins emerged. Enantiomeric pairs of amino acids, peptides, and other biomolecules have been used as templates for growing chiral distorted nanocrystals and for chiral functionalization of achiral nanoparticles. More recently, circularly polarized light has been raised as an alternative for synthesizing enantiomeric pairs of plasmonic nanocrystals on anisotropic seeds. These chiral nanostructured materials exhibit unique properties with applications in biological and technological fields harnessed in various applications, including biosensing, asymmetric catalysis, and optical devices. This review presents the experimental strategies and mechanisms of chirality transfer to plasmonic and ceramic nanoparticles using peptide templates and circularly polarized light.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"409-417\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01278-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01278-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Chirality transfer to nanocrystals by peptide templates and circularly polarized light.
Since the early advent of nanotechnology, proteins, peptides, and amino acids have frequently been used to synthesize and stabilize metallic and ceramic nanoparticles. Also, several signaling peptides and enzymes have the activity modulated by the association with nanostructured particles and films. Lately, with the discovery of giant magnetoresistance and chiral-induced spin selectivity, an innovative nanotechnological use of amino acids and proteins emerged. Enantiomeric pairs of amino acids, peptides, and other biomolecules have been used as templates for growing chiral distorted nanocrystals and for chiral functionalization of achiral nanoparticles. More recently, circularly polarized light has been raised as an alternative for synthesizing enantiomeric pairs of plasmonic nanocrystals on anisotropic seeds. These chiral nanostructured materials exhibit unique properties with applications in biological and technological fields harnessed in various applications, including biosensing, asymmetric catalysis, and optical devices. This review presents the experimental strategies and mechanisms of chirality transfer to plasmonic and ceramic nanoparticles using peptide templates and circularly polarized light.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation