Ahmed R Mahmoud, Emad A Farahat, Loutfy M Hassan, Marwa Waseem A Halmy
{"title":"预测未来气候变化对埃及地中海生态系统物种分布的影响。","authors":"Ahmed R Mahmoud, Emad A Farahat, Loutfy M Hassan, Marwa Waseem A Halmy","doi":"10.1186/s12870-025-06630-7","DOIUrl":null,"url":null,"abstract":"<p><p>As climate change accelerates, it may significantly alter species distributions and endanger many species. The use of species distribution modeling (SDM) has become increasingly vital for assessing the likely effects of climatic changes on biodiversity. This approach is especially relevant as our understanding of environmental shifts and their ecological implications deepens. SDMs are frequently employed to forecast future shifts in species' geographic ranges, estimate extinction risks, evaluate the effectiveness of existing conservation areas, and prioritize conservation efforts. The urgency of these assessments is highlighted by the fact that the Mediterranean area is heating up 20% quicker than the universal average. Given that species have varying ecological tolerances and attributes, their biological responses to environmental changes are likely to differ significantly. This study aimed to assess the potential future distribution of three native Mediterranean species- Thymelaea hirsuta (L.) Endl., Ononis vaginalis Vahl, and Limoniastrum monopetalum (L.) Boiss.-under two GCMs of HadGEM3-GC31-LL and IPSL-CM6A-LR for the periods of 2060s and 2080s and two Shared Socioeconomic Pathway (SSP 1-2.6 and SSP5-8.5), comparing the use of MaxEnt and ensemble modelling techniques in predicting the impact of future climatic changes on these species' distribution. The results indicated that there are high similarities and agreement between MaxEnt and the ensemble models' outputs. The two modelling techniques exhibited excellent fits and performance. The distribution range of T. hirsuta and O. vaginalis will expand and migrate to the northwest direction of the Mediterranean coast of Egypt, while L. monopetalum will contract. The insights gained from species distribution modeling could guide future conservation efforts and promote the sustainable use of the studied species in the arid coastal environments of the Mediterranean region. Clinical trial number Not applicable.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"644"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the future impact of climate change on the distribution of species in Egypt's mediterranean ecosystems.\",\"authors\":\"Ahmed R Mahmoud, Emad A Farahat, Loutfy M Hassan, Marwa Waseem A Halmy\",\"doi\":\"10.1186/s12870-025-06630-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As climate change accelerates, it may significantly alter species distributions and endanger many species. The use of species distribution modeling (SDM) has become increasingly vital for assessing the likely effects of climatic changes on biodiversity. This approach is especially relevant as our understanding of environmental shifts and their ecological implications deepens. SDMs are frequently employed to forecast future shifts in species' geographic ranges, estimate extinction risks, evaluate the effectiveness of existing conservation areas, and prioritize conservation efforts. The urgency of these assessments is highlighted by the fact that the Mediterranean area is heating up 20% quicker than the universal average. Given that species have varying ecological tolerances and attributes, their biological responses to environmental changes are likely to differ significantly. This study aimed to assess the potential future distribution of three native Mediterranean species- Thymelaea hirsuta (L.) Endl., Ononis vaginalis Vahl, and Limoniastrum monopetalum (L.) Boiss.-under two GCMs of HadGEM3-GC31-LL and IPSL-CM6A-LR for the periods of 2060s and 2080s and two Shared Socioeconomic Pathway (SSP 1-2.6 and SSP5-8.5), comparing the use of MaxEnt and ensemble modelling techniques in predicting the impact of future climatic changes on these species' distribution. The results indicated that there are high similarities and agreement between MaxEnt and the ensemble models' outputs. The two modelling techniques exhibited excellent fits and performance. The distribution range of T. hirsuta and O. vaginalis will expand and migrate to the northwest direction of the Mediterranean coast of Egypt, while L. monopetalum will contract. The insights gained from species distribution modeling could guide future conservation efforts and promote the sustainable use of the studied species in the arid coastal environments of the Mediterranean region. Clinical trial number Not applicable.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"644\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06630-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06630-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Predicting the future impact of climate change on the distribution of species in Egypt's mediterranean ecosystems.
As climate change accelerates, it may significantly alter species distributions and endanger many species. The use of species distribution modeling (SDM) has become increasingly vital for assessing the likely effects of climatic changes on biodiversity. This approach is especially relevant as our understanding of environmental shifts and their ecological implications deepens. SDMs are frequently employed to forecast future shifts in species' geographic ranges, estimate extinction risks, evaluate the effectiveness of existing conservation areas, and prioritize conservation efforts. The urgency of these assessments is highlighted by the fact that the Mediterranean area is heating up 20% quicker than the universal average. Given that species have varying ecological tolerances and attributes, their biological responses to environmental changes are likely to differ significantly. This study aimed to assess the potential future distribution of three native Mediterranean species- Thymelaea hirsuta (L.) Endl., Ononis vaginalis Vahl, and Limoniastrum monopetalum (L.) Boiss.-under two GCMs of HadGEM3-GC31-LL and IPSL-CM6A-LR for the periods of 2060s and 2080s and two Shared Socioeconomic Pathway (SSP 1-2.6 and SSP5-8.5), comparing the use of MaxEnt and ensemble modelling techniques in predicting the impact of future climatic changes on these species' distribution. The results indicated that there are high similarities and agreement between MaxEnt and the ensemble models' outputs. The two modelling techniques exhibited excellent fits and performance. The distribution range of T. hirsuta and O. vaginalis will expand and migrate to the northwest direction of the Mediterranean coast of Egypt, while L. monopetalum will contract. The insights gained from species distribution modeling could guide future conservation efforts and promote the sustainable use of the studied species in the arid coastal environments of the Mediterranean region. Clinical trial number Not applicable.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.