Luis Olivares-Quiroz, Marcos Angel Gonzalez Olvera
{"title":"蛋白质折叠:基本统计物理模型和计算多种群遗传算法。","authors":"Luis Olivares-Quiroz, Marcos Angel Gonzalez Olvera","doi":"10.1007/s12551-025-01281-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a brief and concise review about the main features of protein folding which is one of the central research questions at the interface of physics, molecular biology, and computational sciences. We describe the physical foundations of the protein folding phenomenon itself and how it arises as both a free energy minimization process combined with a hydrophobic collapse of the enzyme molten globule due to inter and intramolecular forces among amino acid residues themselves and water molecules. We cover briefly some basic statistical physics-based models to predict the thermodynamic properties of the protein folding transition. Then, we focus our attention on the implementation of computational algorithms designed to minimize energy functions in polypeptides.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"247-257"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein folding: basic statistical physics models and computational multipopulation genetic algorithms.\",\"authors\":\"Luis Olivares-Quiroz, Marcos Angel Gonzalez Olvera\",\"doi\":\"10.1007/s12551-025-01281-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we present a brief and concise review about the main features of protein folding which is one of the central research questions at the interface of physics, molecular biology, and computational sciences. We describe the physical foundations of the protein folding phenomenon itself and how it arises as both a free energy minimization process combined with a hydrophobic collapse of the enzyme molten globule due to inter and intramolecular forces among amino acid residues themselves and water molecules. We cover briefly some basic statistical physics-based models to predict the thermodynamic properties of the protein folding transition. Then, we focus our attention on the implementation of computational algorithms designed to minimize energy functions in polypeptides.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"247-257\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01281-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01281-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Protein folding: basic statistical physics models and computational multipopulation genetic algorithms.
In this work, we present a brief and concise review about the main features of protein folding which is one of the central research questions at the interface of physics, molecular biology, and computational sciences. We describe the physical foundations of the protein folding phenomenon itself and how it arises as both a free energy minimization process combined with a hydrophobic collapse of the enzyme molten globule due to inter and intramolecular forces among amino acid residues themselves and water molecules. We cover briefly some basic statistical physics-based models to predict the thermodynamic properties of the protein folding transition. Then, we focus our attention on the implementation of computational algorithms designed to minimize energy functions in polypeptides.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation