杂合多亲本重组自交系(RIX)玉米群体抗穗腐病及产量性状的遗传基础

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Shree Prasad Neupane, Lorenzo Stagnati, Matteo Dell'Acqua, Matteo Busconi, Alessandra Lanubile, Mario Enrico Pè, Leonardo Caproni, Adriano Marocco
{"title":"杂合多亲本重组自交系(RIX)玉米群体抗穗腐病及产量性状的遗传基础","authors":"Shree Prasad Neupane, Lorenzo Stagnati, Matteo Dell'Acqua, Matteo Busconi, Alessandra Lanubile, Mario Enrico Pè, Leonardo Caproni, Adriano Marocco","doi":"10.1186/s12870-025-06684-7","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (Zea mays L.) is one of the most productive crops worldwide. As a heterotic crop predominantly grown as F<sub>1</sub> hybrid, maize exhibits challenges for genetic studies of complex traits, since homozygous genotypes, which are largely used in these studies, may not accurately reflect what happens in cultivated conditions. To map Fusarium Ear Rot (FER) resistance to Fusarium verticillioides and traits with potential impact on yield, including phenology, we constructed a recombinant intercross (RIX) population. This was achived by crossing pairs of recombinant inbred lines (RILs) derived from a multi-parent maize population. We characterized the RIX population over two growing seasons, employing artificial F. verticillioides inoculation. The heterozygous background of the material enabled the identification of QTL and candidate genes through in silico reconstruction of RIX genotype probabilities. A total of 37 loci were identified using single-year BLUPs while 29 with joint-year BLUPs. These, included several known QTL associated with days to tasseling, kernel row number and a QTL on the chromosome 9 associated with FER resistance. In this region, we could identify candidates based on their predicted functions and potential roles in plant-pathogen interactions and/or resistance mechanisms. These QTL represent potential breeding targets to FER resistance and yield components in commercial maize varieties.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"639"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic basis of Fusarium ear rot resistance and productivity traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize population.\",\"authors\":\"Shree Prasad Neupane, Lorenzo Stagnati, Matteo Dell'Acqua, Matteo Busconi, Alessandra Lanubile, Mario Enrico Pè, Leonardo Caproni, Adriano Marocco\",\"doi\":\"10.1186/s12870-025-06684-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize (Zea mays L.) is one of the most productive crops worldwide. As a heterotic crop predominantly grown as F<sub>1</sub> hybrid, maize exhibits challenges for genetic studies of complex traits, since homozygous genotypes, which are largely used in these studies, may not accurately reflect what happens in cultivated conditions. To map Fusarium Ear Rot (FER) resistance to Fusarium verticillioides and traits with potential impact on yield, including phenology, we constructed a recombinant intercross (RIX) population. This was achived by crossing pairs of recombinant inbred lines (RILs) derived from a multi-parent maize population. We characterized the RIX population over two growing seasons, employing artificial F. verticillioides inoculation. The heterozygous background of the material enabled the identification of QTL and candidate genes through in silico reconstruction of RIX genotype probabilities. A total of 37 loci were identified using single-year BLUPs while 29 with joint-year BLUPs. These, included several known QTL associated with days to tasseling, kernel row number and a QTL on the chromosome 9 associated with FER resistance. In this region, we could identify candidates based on their predicted functions and potential roles in plant-pathogen interactions and/or resistance mechanisms. These QTL represent potential breeding targets to FER resistance and yield components in commercial maize varieties.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"639\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-06684-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06684-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

玉米(Zea mays L.)是全球产量最高的作物之一。作为一种以F1杂交为主的杂种作物,玉米在复杂性状的遗传研究中表现出挑战,因为在这些研究中大量使用的纯合基因型可能不能准确反映栽培条件下发生的情况。为了解穗腐病镰刀菌(Fusarium Ear Rot, FER)对黄萎病镰刀菌(Fusarium verticillioides)的抗性及其物候特征,构建了重组杂交(RIX)群体。这是通过杂交来自多亲本玉米群体的重组自交系(RILs)来实现的。我们对RIX种群进行了两个生长季节的特征分析,采用人工接种黄萎病杆菌。材料的杂合背景使其能够通过RIX基因型概率的计算机重建来鉴定QTL和候选基因。使用单年blp共鉴定了37个位点,而使用联合年blp共鉴定了29个位点。其中包括几个已知的与抽雄天数、籽粒行数相关的QTL和9号染色体上一个与FER抗性相关的QTL。在这个区域,我们可以根据它们的预测功能和在植物-病原体相互作用和/或抗性机制中的潜在作用来确定候选植物。这些QTL代表了商品玉米品种抗性和产量成分的潜在育种目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic basis of Fusarium ear rot resistance and productivity traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize population.

Maize (Zea mays L.) is one of the most productive crops worldwide. As a heterotic crop predominantly grown as F1 hybrid, maize exhibits challenges for genetic studies of complex traits, since homozygous genotypes, which are largely used in these studies, may not accurately reflect what happens in cultivated conditions. To map Fusarium Ear Rot (FER) resistance to Fusarium verticillioides and traits with potential impact on yield, including phenology, we constructed a recombinant intercross (RIX) population. This was achived by crossing pairs of recombinant inbred lines (RILs) derived from a multi-parent maize population. We characterized the RIX population over two growing seasons, employing artificial F. verticillioides inoculation. The heterozygous background of the material enabled the identification of QTL and candidate genes through in silico reconstruction of RIX genotype probabilities. A total of 37 loci were identified using single-year BLUPs while 29 with joint-year BLUPs. These, included several known QTL associated with days to tasseling, kernel row number and a QTL on the chromosome 9 associated with FER resistance. In this region, we could identify candidates based on their predicted functions and potential roles in plant-pathogen interactions and/or resistance mechanisms. These QTL represent potential breeding targets to FER resistance and yield components in commercial maize varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信