Andresa Messias, Melisa Carllinni Colombo, Juan Cruz Palermo, Jonathan A Córdova, Giovanna De Simone, Paolo Ascenzi, Darío A Estrin, Luciana Capece, Sara E Bari
{"title":"酸碱配体与铁血红素蛋白结合的机理。","authors":"Andresa Messias, Melisa Carllinni Colombo, Juan Cruz Palermo, Jonathan A Córdova, Giovanna De Simone, Paolo Ascenzi, Darío A Estrin, Luciana Capece, Sara E Bari","doi":"10.1007/s12551-025-01279-w","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of ligand binding to ferric heme proteins is relevant in a variety of biochemical processes. With a few exceptions, ferric heme proteins at physiological pH typically show the sixth (distal) coordination position of the heme iron occupied by a water molecule. This contrasts with ferrous heme proteins, where this position is usually vacant in the absence of external ligands. In this review, we shed light on mechanistic aspects of this process, by discussing our recent results of binding of hydrogen sulfide and hydrosulfide (H<sub>2</sub>S/HS<sup>-</sup>) and disulfane and hydrodisulfide (HSSH/HSS<sup>-</sup>) to ferric microperoxidase 11 (MP11Fe<sup>III</sup>) and metmyoglobin (MbFe<sup>III</sup>), as well as binding of peroxynitrous acid/peroxynitrite (ONOOH/ONOO<sup>-</sup>) to ferric <i>M. tuberculosis</i> nitrobindin (NbFe<sup>III</sup>). Stopped flow experimental results of ligand binding rates as a function of pH can be analyzed with a mechanistic proposal consisting of ligand migration and ligand binding steps. Ligand migration to the active site was studied by using steered classical molecular dynamics simulations. The process of ligand binding substitution of the coordinated water molecule has been studied using hybrid quantum-classical (QM-MM) tools. Our results suggest that water molecule release is the critical event of the process in most of the cases, consistently with previous proposals. However, the scenario is complex, since water release depends subtly on the heme environment and may be also assisted by the acid-base behavior of the incoming ligands. Ligand migration may also play a key role in cases in which the active site entrance is hindered.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"17 2","pages":"293-300"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075716/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic aspects of the binding of acid-base ligands to ferric heme proteins.\",\"authors\":\"Andresa Messias, Melisa Carllinni Colombo, Juan Cruz Palermo, Jonathan A Córdova, Giovanna De Simone, Paolo Ascenzi, Darío A Estrin, Luciana Capece, Sara E Bari\",\"doi\":\"10.1007/s12551-025-01279-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of ligand binding to ferric heme proteins is relevant in a variety of biochemical processes. With a few exceptions, ferric heme proteins at physiological pH typically show the sixth (distal) coordination position of the heme iron occupied by a water molecule. This contrasts with ferrous heme proteins, where this position is usually vacant in the absence of external ligands. In this review, we shed light on mechanistic aspects of this process, by discussing our recent results of binding of hydrogen sulfide and hydrosulfide (H<sub>2</sub>S/HS<sup>-</sup>) and disulfane and hydrodisulfide (HSSH/HSS<sup>-</sup>) to ferric microperoxidase 11 (MP11Fe<sup>III</sup>) and metmyoglobin (MbFe<sup>III</sup>), as well as binding of peroxynitrous acid/peroxynitrite (ONOOH/ONOO<sup>-</sup>) to ferric <i>M. tuberculosis</i> nitrobindin (NbFe<sup>III</sup>). Stopped flow experimental results of ligand binding rates as a function of pH can be analyzed with a mechanistic proposal consisting of ligand migration and ligand binding steps. Ligand migration to the active site was studied by using steered classical molecular dynamics simulations. The process of ligand binding substitution of the coordinated water molecule has been studied using hybrid quantum-classical (QM-MM) tools. Our results suggest that water molecule release is the critical event of the process in most of the cases, consistently with previous proposals. However, the scenario is complex, since water release depends subtly on the heme environment and may be also assisted by the acid-base behavior of the incoming ligands. Ligand migration may also play a key role in cases in which the active site entrance is hindered.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":\"17 2\",\"pages\":\"293-300\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075716/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-025-01279-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-025-01279-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Mechanistic aspects of the binding of acid-base ligands to ferric heme proteins.
The kinetics of ligand binding to ferric heme proteins is relevant in a variety of biochemical processes. With a few exceptions, ferric heme proteins at physiological pH typically show the sixth (distal) coordination position of the heme iron occupied by a water molecule. This contrasts with ferrous heme proteins, where this position is usually vacant in the absence of external ligands. In this review, we shed light on mechanistic aspects of this process, by discussing our recent results of binding of hydrogen sulfide and hydrosulfide (H2S/HS-) and disulfane and hydrodisulfide (HSSH/HSS-) to ferric microperoxidase 11 (MP11FeIII) and metmyoglobin (MbFeIII), as well as binding of peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) to ferric M. tuberculosis nitrobindin (NbFeIII). Stopped flow experimental results of ligand binding rates as a function of pH can be analyzed with a mechanistic proposal consisting of ligand migration and ligand binding steps. Ligand migration to the active site was studied by using steered classical molecular dynamics simulations. The process of ligand binding substitution of the coordinated water molecule has been studied using hybrid quantum-classical (QM-MM) tools. Our results suggest that water molecule release is the critical event of the process in most of the cases, consistently with previous proposals. However, the scenario is complex, since water release depends subtly on the heme environment and may be also assisted by the acid-base behavior of the incoming ligands. Ligand migration may also play a key role in cases in which the active site entrance is hindered.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation