{"title":"FGF8通过FGFR1/p-p38轴在软骨细胞中促进脂滴积累。","authors":"Minglei Huang, Haoran Chen, Jieya Wei, Caixia Pi, Mengmeng Duan, Xiaohua Pu, Zhixing Niu, Siqun Xu, Shasha Tu, Sijun Liu, Jiazhou Li, Li Zhang, Yang Liu, Hao Chen, Chunming Xu, Jing Xie","doi":"10.3724/abbs.2025075","DOIUrl":null,"url":null,"abstract":"<p><p>Chondrocytes store lipids in the form of lipid droplets (LDs) and maintain cartilage lipid metabolic homeostasis by consuming or regenerating LDs. This modulation is largely mediated by a series of biochemical factors. Fibroblast growth factor 8 (FGF8) is one of the most important factors involved in the proliferation, differentiation, and migration of chondrocytes and has attracted increasing attention in the physiology and pathology of cartilage. However, the effect of FGF8 on LD accumulation in chondrocytes remains unclear. This study aims to elucidate the role of FGF8 in LDs and explore the underlying biomechanism involved. The results reveal that FGF8 promotes LD accumulation in chondrocytes by upregulating perilipin1 (Plin1) expression. FGF8 activates the cytoplasmic p-p38 signaling pathway via fibroblast growth factor receptor 1 (FGFR1) to increase LD accumulation in chondrocytes. Subsequent experiments with siRNAs and specific inhibitors further confirm the importance of the FGFR1/p38 axis for LD accumulation in chondrocytes exposed to FGF8. The results increase our understanding of the role of FGF8 in the lipid metabolic homeostasis of chondrocytes and provide insights into the physiology and pathology of cartilage.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FGF8 promotes lipid droplet accumulation via the FGFR1/p-p38 axis in chondrocytes.\",\"authors\":\"Minglei Huang, Haoran Chen, Jieya Wei, Caixia Pi, Mengmeng Duan, Xiaohua Pu, Zhixing Niu, Siqun Xu, Shasha Tu, Sijun Liu, Jiazhou Li, Li Zhang, Yang Liu, Hao Chen, Chunming Xu, Jing Xie\",\"doi\":\"10.3724/abbs.2025075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chondrocytes store lipids in the form of lipid droplets (LDs) and maintain cartilage lipid metabolic homeostasis by consuming or regenerating LDs. This modulation is largely mediated by a series of biochemical factors. Fibroblast growth factor 8 (FGF8) is one of the most important factors involved in the proliferation, differentiation, and migration of chondrocytes and has attracted increasing attention in the physiology and pathology of cartilage. However, the effect of FGF8 on LD accumulation in chondrocytes remains unclear. This study aims to elucidate the role of FGF8 in LDs and explore the underlying biomechanism involved. The results reveal that FGF8 promotes LD accumulation in chondrocytes by upregulating perilipin1 (Plin1) expression. FGF8 activates the cytoplasmic p-p38 signaling pathway via fibroblast growth factor receptor 1 (FGFR1) to increase LD accumulation in chondrocytes. Subsequent experiments with siRNAs and specific inhibitors further confirm the importance of the FGFR1/p38 axis for LD accumulation in chondrocytes exposed to FGF8. The results increase our understanding of the role of FGF8 in the lipid metabolic homeostasis of chondrocytes and provide insights into the physiology and pathology of cartilage.</p>\",\"PeriodicalId\":6978,\"journal\":{\"name\":\"Acta biochimica et biophysica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica et biophysica Sinica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3724/abbs.2025075\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025075","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
FGF8 promotes lipid droplet accumulation via the FGFR1/p-p38 axis in chondrocytes.
Chondrocytes store lipids in the form of lipid droplets (LDs) and maintain cartilage lipid metabolic homeostasis by consuming or regenerating LDs. This modulation is largely mediated by a series of biochemical factors. Fibroblast growth factor 8 (FGF8) is one of the most important factors involved in the proliferation, differentiation, and migration of chondrocytes and has attracted increasing attention in the physiology and pathology of cartilage. However, the effect of FGF8 on LD accumulation in chondrocytes remains unclear. This study aims to elucidate the role of FGF8 in LDs and explore the underlying biomechanism involved. The results reveal that FGF8 promotes LD accumulation in chondrocytes by upregulating perilipin1 (Plin1) expression. FGF8 activates the cytoplasmic p-p38 signaling pathway via fibroblast growth factor receptor 1 (FGFR1) to increase LD accumulation in chondrocytes. Subsequent experiments with siRNAs and specific inhibitors further confirm the importance of the FGFR1/p38 axis for LD accumulation in chondrocytes exposed to FGF8. The results increase our understanding of the role of FGF8 in the lipid metabolic homeostasis of chondrocytes and provide insights into the physiology and pathology of cartilage.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.