阳离子-阴离子共掺杂Na3V2(PO4)3阴极用于稳健和高性能钠离子存储。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tao Yang, Zhenzhen Wu, Xin Xu, Fuzhou Chen, Xinhua Geng, Yanjun Wang, Feng Ji, Changlong Sun, Shengzhou Chen, Jiahai Wang
{"title":"阳离子-阴离子共掺杂Na3V2(PO4)3阴极用于稳健和高性能钠离子存储。","authors":"Tao Yang, Zhenzhen Wu, Xin Xu, Fuzhou Chen, Xinhua Geng, Yanjun Wang, Feng Ji, Changlong Sun, Shengzhou Chen, Jiahai Wang","doi":"10.1002/smtd.202500370","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium ion superconductors (NASICON) are widely perceived as potential cathodes for sodium-ion batteries (SIBs) because of their good structural stability and high operation potential for Na<sup>+</sup> de/intercalation. Nevertheless, the limited sodium ion storage capacity, rate capability, and stability due to the poor electronic conductivity hinder their widespread application. In this work, cation (Fe<sup>3+</sup>) and multivalent anion group (MoO<sub>4</sub> <sup>2-</sup>) are co-doped into Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) by replacing V<sup>3+</sup> and PO<sub>4</sub> <sup>3-</sup>, producing a Fe<sup>3+</sup>/MoO<sub>4</sub> <sup>2-</sup>co-doped NVP, i.e., Na<sub>3</sub>V<sub>2-2x</sub>Fe<sub>2x</sub>(PO<sub>4</sub>)<sub>3-3x</sub>(MoO<sub>4</sub>)<sub>3x</sub> (0 ≤ x ≤ 0.06) compound. In comparison with the pristine NVP, this co-doped NVP delivers much enhanced rate performance, high specific capacity, and cyclic stability. The stabilized V<sup>4+</sup>/V<sup>5+</sup> redox reaction at 4.0 V (vs Na/Na<sup>+</sup>), enabled by cation-anion co-doping, can remarkably promote the sodium-ion de/intercalation potential and specific capacity compared to pristine NVP. Additionally, density functional theory (DFT) simulation confirms the enhanced electronic conductivity and sodium ion diffusion kinetics, which can further boost the rate capability and cycling stability. The proposed cation-anion co-doping strategy offers a promising pathway for scaling up the manufacturing of NVP-based cathodes for SIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500370"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cation-Anion Co-doped Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> Cathode for Robust and High-Performance Sodium-Ion Storage.\",\"authors\":\"Tao Yang, Zhenzhen Wu, Xin Xu, Fuzhou Chen, Xinhua Geng, Yanjun Wang, Feng Ji, Changlong Sun, Shengzhou Chen, Jiahai Wang\",\"doi\":\"10.1002/smtd.202500370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium ion superconductors (NASICON) are widely perceived as potential cathodes for sodium-ion batteries (SIBs) because of their good structural stability and high operation potential for Na<sup>+</sup> de/intercalation. Nevertheless, the limited sodium ion storage capacity, rate capability, and stability due to the poor electronic conductivity hinder their widespread application. In this work, cation (Fe<sup>3+</sup>) and multivalent anion group (MoO<sub>4</sub> <sup>2-</sup>) are co-doped into Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) by replacing V<sup>3+</sup> and PO<sub>4</sub> <sup>3-</sup>, producing a Fe<sup>3+</sup>/MoO<sub>4</sub> <sup>2-</sup>co-doped NVP, i.e., Na<sub>3</sub>V<sub>2-2x</sub>Fe<sub>2x</sub>(PO<sub>4</sub>)<sub>3-3x</sub>(MoO<sub>4</sub>)<sub>3x</sub> (0 ≤ x ≤ 0.06) compound. In comparison with the pristine NVP, this co-doped NVP delivers much enhanced rate performance, high specific capacity, and cyclic stability. The stabilized V<sup>4+</sup>/V<sup>5+</sup> redox reaction at 4.0 V (vs Na/Na<sup>+</sup>), enabled by cation-anion co-doping, can remarkably promote the sodium-ion de/intercalation potential and specific capacity compared to pristine NVP. Additionally, density functional theory (DFT) simulation confirms the enhanced electronic conductivity and sodium ion diffusion kinetics, which can further boost the rate capability and cycling stability. The proposed cation-anion co-doping strategy offers a promising pathway for scaling up the manufacturing of NVP-based cathodes for SIBs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500370\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500370\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500370","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子超导体(NASICON)由于其良好的结构稳定性和高的Na+ de/插层操作潜力而被广泛认为是钠离子电池(sib)的潜在阴极。然而,由于电子导电性差,钠离子的存储容量、速率能力和稳定性有限,阻碍了其广泛应用。本研究将阳离子(Fe3+)和多价阴离子基团(MoO4 2-)通过取代V3+和PO4 3-共掺杂到Na3V2(PO4)3 (NVP)中,得到Fe3+/MoO4 2共掺杂NVP,即Na3V2- 2xfe2x (PO4)3-3x(MoO4)3x(0≤x≤0.06)化合物。与原始NVP相比,这种共掺杂NVP具有更高的速率性能,高比容量和循环稳定性。在4.0 V (vs Na/Na+)下,通过正阴离子共掺杂实现V4+/V5+的稳定氧化还原反应,与原始NVP相比,可以显著提高钠离子的脱插电位和比容量。此外,密度泛函理论(DFT)模拟证实了电子电导率和钠离子扩散动力学的增强,从而进一步提高了速率能力和循环稳定性。所提出的阳离子-阴离子共掺杂策略为扩大基于nvp的sib阴极的制造提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cation-Anion Co-doped Na3V2(PO4)3 Cathode for Robust and High-Performance Sodium-Ion Storage.

Sodium ion superconductors (NASICON) are widely perceived as potential cathodes for sodium-ion batteries (SIBs) because of their good structural stability and high operation potential for Na+ de/intercalation. Nevertheless, the limited sodium ion storage capacity, rate capability, and stability due to the poor electronic conductivity hinder their widespread application. In this work, cation (Fe3+) and multivalent anion group (MoO4 2-) are co-doped into Na3V2(PO4)3 (NVP) by replacing V3+ and PO4 3-, producing a Fe3+/MoO4 2-co-doped NVP, i.e., Na3V2-2xFe2x(PO4)3-3x(MoO4)3x (0 ≤ x ≤ 0.06) compound. In comparison with the pristine NVP, this co-doped NVP delivers much enhanced rate performance, high specific capacity, and cyclic stability. The stabilized V4+/V5+ redox reaction at 4.0 V (vs Na/Na+), enabled by cation-anion co-doping, can remarkably promote the sodium-ion de/intercalation potential and specific capacity compared to pristine NVP. Additionally, density functional theory (DFT) simulation confirms the enhanced electronic conductivity and sodium ion diffusion kinetics, which can further boost the rate capability and cycling stability. The proposed cation-anion co-doping strategy offers a promising pathway for scaling up the manufacturing of NVP-based cathodes for SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信