Cheng Yao, Heqi Wang, Jingxia Han, Kai Yang, Tingting Lin, Jing Jin, Caibin Zhu, Huijuan Liu
{"title":"锌基多活性框架纳米粒子TSA-CAN-Zn通过双重阻断HMGB1/RAGE和AGEs/RAGE通路抑制皮肤糖基化。","authors":"Cheng Yao, Heqi Wang, Jingxia Han, Kai Yang, Tingting Lin, Jing Jin, Caibin Zhu, Huijuan Liu","doi":"10.1002/adhm.202500664","DOIUrl":null,"url":null,"abstract":"<p><p>Receptor for advanced glycation end products (RAGE) plays an important role in skin glycation damage. High-mobility group 1B protein (HMGB1) and advanced glycation end products (AGEs) are key RAGE ligands. Simultaneous inhibition of HMGB1/RAGE and AGEs/RAGE pathways maybe an effective strategy to alleviate glycation induced skin damage. In this work, Theasinensin A (TSA) is identified as the active molecule inhibiting HMGB1-RAGE interaction through molecular docking. To simultaneously suppress HMGB1/RAGE and AGEs/RAGE pathways, Zn-based multi-active framework nanoparticles TSA-CAN-Zn are designed, which contain TSA and the active molecule L-carnosine (CAN) that inhibits AGEs production. In vitro studies demonstrated that TSA-CAN-Zn have radical scavenging activity and AGEs formation inhibition activity. TSA-CAN-Zn can not only inhibit ROS accumulation, cell apoptosis, and inflammatory factors production induced by glycation in HaCaT cells but also enhanced the lysosomal degradation of AGEs. TSA-CAN-Zn also mitigated the damage caused by glycation in mouse skin glycation model. Single-cell RNA sequencing results revealed the impact of TSA-CAN-Zn on different cell types of skin tissue, especially the basal cells of the epidermal layer and inflammation-related macrophages. And pathway analysis revealed that TSA-CAN-Zn mainly influences the downstream pathways of RAGE. Collectively, TSA-CAN-Zn is a promising therapeutic candidate for ameliorating glycation-induced skin damage.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2500664"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zn-Based Multi-Active Framework Nanoparticles TSA-CAN-Zn Inhibit Skin Glycation via Dual Blockade of HMGB1/RAGE and AGEs/RAGE Pathways.\",\"authors\":\"Cheng Yao, Heqi Wang, Jingxia Han, Kai Yang, Tingting Lin, Jing Jin, Caibin Zhu, Huijuan Liu\",\"doi\":\"10.1002/adhm.202500664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Receptor for advanced glycation end products (RAGE) plays an important role in skin glycation damage. High-mobility group 1B protein (HMGB1) and advanced glycation end products (AGEs) are key RAGE ligands. Simultaneous inhibition of HMGB1/RAGE and AGEs/RAGE pathways maybe an effective strategy to alleviate glycation induced skin damage. In this work, Theasinensin A (TSA) is identified as the active molecule inhibiting HMGB1-RAGE interaction through molecular docking. To simultaneously suppress HMGB1/RAGE and AGEs/RAGE pathways, Zn-based multi-active framework nanoparticles TSA-CAN-Zn are designed, which contain TSA and the active molecule L-carnosine (CAN) that inhibits AGEs production. In vitro studies demonstrated that TSA-CAN-Zn have radical scavenging activity and AGEs formation inhibition activity. TSA-CAN-Zn can not only inhibit ROS accumulation, cell apoptosis, and inflammatory factors production induced by glycation in HaCaT cells but also enhanced the lysosomal degradation of AGEs. TSA-CAN-Zn also mitigated the damage caused by glycation in mouse skin glycation model. Single-cell RNA sequencing results revealed the impact of TSA-CAN-Zn on different cell types of skin tissue, especially the basal cells of the epidermal layer and inflammation-related macrophages. And pathway analysis revealed that TSA-CAN-Zn mainly influences the downstream pathways of RAGE. Collectively, TSA-CAN-Zn is a promising therapeutic candidate for ameliorating glycation-induced skin damage.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2500664\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202500664\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202500664","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Zn-Based Multi-Active Framework Nanoparticles TSA-CAN-Zn Inhibit Skin Glycation via Dual Blockade of HMGB1/RAGE and AGEs/RAGE Pathways.
Receptor for advanced glycation end products (RAGE) plays an important role in skin glycation damage. High-mobility group 1B protein (HMGB1) and advanced glycation end products (AGEs) are key RAGE ligands. Simultaneous inhibition of HMGB1/RAGE and AGEs/RAGE pathways maybe an effective strategy to alleviate glycation induced skin damage. In this work, Theasinensin A (TSA) is identified as the active molecule inhibiting HMGB1-RAGE interaction through molecular docking. To simultaneously suppress HMGB1/RAGE and AGEs/RAGE pathways, Zn-based multi-active framework nanoparticles TSA-CAN-Zn are designed, which contain TSA and the active molecule L-carnosine (CAN) that inhibits AGEs production. In vitro studies demonstrated that TSA-CAN-Zn have radical scavenging activity and AGEs formation inhibition activity. TSA-CAN-Zn can not only inhibit ROS accumulation, cell apoptosis, and inflammatory factors production induced by glycation in HaCaT cells but also enhanced the lysosomal degradation of AGEs. TSA-CAN-Zn also mitigated the damage caused by glycation in mouse skin glycation model. Single-cell RNA sequencing results revealed the impact of TSA-CAN-Zn on different cell types of skin tissue, especially the basal cells of the epidermal layer and inflammation-related macrophages. And pathway analysis revealed that TSA-CAN-Zn mainly influences the downstream pathways of RAGE. Collectively, TSA-CAN-Zn is a promising therapeutic candidate for ameliorating glycation-induced skin damage.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.