Shah Rukh, Ahmed Akrem, Qamar Saeed, Sohaib Mehmood, Nosherwan Adil, Tazeen Rao, Muhammad Nasir, Uzma Ishaq, Aqal Zaman, Najeeb Ullah, Mohibullah Shah
{"title":"一种有效的植物源几丁质酶:结构信息学及其对棉铃虫的杀虫活性。","authors":"Shah Rukh, Ahmed Akrem, Qamar Saeed, Sohaib Mehmood, Nosherwan Adil, Tazeen Rao, Muhammad Nasir, Uzma Ishaq, Aqal Zaman, Najeeb Ullah, Mohibullah Shah","doi":"10.1007/s12013-025-01777-4","DOIUrl":null,"url":null,"abstract":"<p><p>Helicoverpa armigera (cotton bollworm) is a globally distributed lepidopteran pest that causes estimated annual agricultural losses exceeding 5 billion USD. While chemical pesticides remain the primary control strategy, their prolonged use has led to significant environmental contamination, development of widespread insecticide resistance, and non-target organism toxicity. These limitations underscore the critical need for plant-derived biopesticides that offer target specificity, environmental biodegradability, and sustainable pest management solutions without promoting resistance development. Here, we elucidate the insecticidal potential of Nelumbo nucifera Chitinase (NnChi) against the insect H. armigera through structural informatics and in-vivo insecticidal bioassays. SDS-PAGE showed a single band of ~32 kDa, and LC-MS/MS analysis depicted a fragment of 10 amino acids with 100% identity with Family 19 Class I Chitinase of Mangifera indica. NnChi-predicted structure revealed its two domains (ChB D, Cat D) connected through linker region and docking analysis of both these domains with (GlcNAc)<sub>4</sub> showing binding affinities of -5.6 kcal/mol and -7.0 kcal/mol, respectively. MD simulation (100 ns) showed that 4 residues (RQCR) of ChB D and 4 residues (NRIP) of Cat D contributed to binding with (GlcNAc)<sub>4</sub>. To the best of our knowledge, we are reporting the molecular interactions of both domains (ChB D and Cat D) with (GlcNAc)<sub>4</sub> via simulation studies for the first time. These computational findings were further verified through insecticidal assay. Significant larval mortality of H. armigera was observed from 3<sup>rd</sup>-6<sup>th</sup> instar against 15 µg/g NnChi treatment. Among life cycle parameters, larval and pupal duration, adult eclosion, larval and pupal weight are significantly decreased in a concentration-dependent manner as compared to control. Our integrated structural-functional characterization demonstrates that NnChi exhibits significant insecticidal activity against Helicoverpa armigera. These findings establish NnChi as a promising biopesticide candidate worthy of further investigation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Potent Plant-Derived Chitinase: Structural Informatics and Insecticidal Activity against Helicoverpa armigera.\",\"authors\":\"Shah Rukh, Ahmed Akrem, Qamar Saeed, Sohaib Mehmood, Nosherwan Adil, Tazeen Rao, Muhammad Nasir, Uzma Ishaq, Aqal Zaman, Najeeb Ullah, Mohibullah Shah\",\"doi\":\"10.1007/s12013-025-01777-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Helicoverpa armigera (cotton bollworm) is a globally distributed lepidopteran pest that causes estimated annual agricultural losses exceeding 5 billion USD. While chemical pesticides remain the primary control strategy, their prolonged use has led to significant environmental contamination, development of widespread insecticide resistance, and non-target organism toxicity. These limitations underscore the critical need for plant-derived biopesticides that offer target specificity, environmental biodegradability, and sustainable pest management solutions without promoting resistance development. Here, we elucidate the insecticidal potential of Nelumbo nucifera Chitinase (NnChi) against the insect H. armigera through structural informatics and in-vivo insecticidal bioassays. SDS-PAGE showed a single band of ~32 kDa, and LC-MS/MS analysis depicted a fragment of 10 amino acids with 100% identity with Family 19 Class I Chitinase of Mangifera indica. NnChi-predicted structure revealed its two domains (ChB D, Cat D) connected through linker region and docking analysis of both these domains with (GlcNAc)<sub>4</sub> showing binding affinities of -5.6 kcal/mol and -7.0 kcal/mol, respectively. MD simulation (100 ns) showed that 4 residues (RQCR) of ChB D and 4 residues (NRIP) of Cat D contributed to binding with (GlcNAc)<sub>4</sub>. To the best of our knowledge, we are reporting the molecular interactions of both domains (ChB D and Cat D) with (GlcNAc)<sub>4</sub> via simulation studies for the first time. These computational findings were further verified through insecticidal assay. Significant larval mortality of H. armigera was observed from 3<sup>rd</sup>-6<sup>th</sup> instar against 15 µg/g NnChi treatment. Among life cycle parameters, larval and pupal duration, adult eclosion, larval and pupal weight are significantly decreased in a concentration-dependent manner as compared to control. Our integrated structural-functional characterization demonstrates that NnChi exhibits significant insecticidal activity against Helicoverpa armigera. These findings establish NnChi as a promising biopesticide candidate worthy of further investigation.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-025-01777-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01777-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Potent Plant-Derived Chitinase: Structural Informatics and Insecticidal Activity against Helicoverpa armigera.
Helicoverpa armigera (cotton bollworm) is a globally distributed lepidopteran pest that causes estimated annual agricultural losses exceeding 5 billion USD. While chemical pesticides remain the primary control strategy, their prolonged use has led to significant environmental contamination, development of widespread insecticide resistance, and non-target organism toxicity. These limitations underscore the critical need for plant-derived biopesticides that offer target specificity, environmental biodegradability, and sustainable pest management solutions without promoting resistance development. Here, we elucidate the insecticidal potential of Nelumbo nucifera Chitinase (NnChi) against the insect H. armigera through structural informatics and in-vivo insecticidal bioassays. SDS-PAGE showed a single band of ~32 kDa, and LC-MS/MS analysis depicted a fragment of 10 amino acids with 100% identity with Family 19 Class I Chitinase of Mangifera indica. NnChi-predicted structure revealed its two domains (ChB D, Cat D) connected through linker region and docking analysis of both these domains with (GlcNAc)4 showing binding affinities of -5.6 kcal/mol and -7.0 kcal/mol, respectively. MD simulation (100 ns) showed that 4 residues (RQCR) of ChB D and 4 residues (NRIP) of Cat D contributed to binding with (GlcNAc)4. To the best of our knowledge, we are reporting the molecular interactions of both domains (ChB D and Cat D) with (GlcNAc)4 via simulation studies for the first time. These computational findings were further verified through insecticidal assay. Significant larval mortality of H. armigera was observed from 3rd-6th instar against 15 µg/g NnChi treatment. Among life cycle parameters, larval and pupal duration, adult eclosion, larval and pupal weight are significantly decreased in a concentration-dependent manner as compared to control. Our integrated structural-functional characterization demonstrates that NnChi exhibits significant insecticidal activity against Helicoverpa armigera. These findings establish NnChi as a promising biopesticide candidate worthy of further investigation.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.