{"title":"半人工光合能量转换共轭聚合物-微生物生物杂合体的研究进展。","authors":"Jie Zhou, Jun Cheng, Hangxun Xu","doi":"10.1002/marc.202500234","DOIUrl":null,"url":null,"abstract":"<p><p>Semi-artificial photosynthesis, which merges the precision of synthetic materials with the catalytic versatility of biological systems, offers a transformative route to solar-driven chemical fuel production and sustainable energy conversion. Conjugated polymers, with their high molar absorption coefficients, broad spectral responsiveness, and tunable semiconducting properties, have emerged as key components in advancing semi-artificial photosynthetic biohybrids. Their capacity for targeted surface modification not only facilitates enhanced interfacing with biological catalysts but also optimizes charge transfer across the bio-synthetic interface. This review traces the evolution of conjugated polymer-based biohybrids, highlighting recent advancements that extend microbial light harvesting, support cellular resilience against environmental stress, and optimize charge transfer via precise structure-activity relationships. Furthermore, this review explores the challenges and opportunities in this field, offering a roadmap for the design of durable and high-performance biohybrid systems. Through the integration of conjugated polymers and microorganisms, this review outlines a strategic approach for solar-driven chemical energy conversion, paving the way for eco-friendly energy solutions.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500234"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Developing Conjugated Polymer-Microorganism Biohybrids for Semi-Artificial Photosynthetic Energy Conversion.\",\"authors\":\"Jie Zhou, Jun Cheng, Hangxun Xu\",\"doi\":\"10.1002/marc.202500234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semi-artificial photosynthesis, which merges the precision of synthetic materials with the catalytic versatility of biological systems, offers a transformative route to solar-driven chemical fuel production and sustainable energy conversion. Conjugated polymers, with their high molar absorption coefficients, broad spectral responsiveness, and tunable semiconducting properties, have emerged as key components in advancing semi-artificial photosynthetic biohybrids. Their capacity for targeted surface modification not only facilitates enhanced interfacing with biological catalysts but also optimizes charge transfer across the bio-synthetic interface. This review traces the evolution of conjugated polymer-based biohybrids, highlighting recent advancements that extend microbial light harvesting, support cellular resilience against environmental stress, and optimize charge transfer via precise structure-activity relationships. Furthermore, this review explores the challenges and opportunities in this field, offering a roadmap for the design of durable and high-performance biohybrid systems. Through the integration of conjugated polymers and microorganisms, this review outlines a strategic approach for solar-driven chemical energy conversion, paving the way for eco-friendly energy solutions.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2500234\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202500234\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500234","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recent Progress in Developing Conjugated Polymer-Microorganism Biohybrids for Semi-Artificial Photosynthetic Energy Conversion.
Semi-artificial photosynthesis, which merges the precision of synthetic materials with the catalytic versatility of biological systems, offers a transformative route to solar-driven chemical fuel production and sustainable energy conversion. Conjugated polymers, with their high molar absorption coefficients, broad spectral responsiveness, and tunable semiconducting properties, have emerged as key components in advancing semi-artificial photosynthetic biohybrids. Their capacity for targeted surface modification not only facilitates enhanced interfacing with biological catalysts but also optimizes charge transfer across the bio-synthetic interface. This review traces the evolution of conjugated polymer-based biohybrids, highlighting recent advancements that extend microbial light harvesting, support cellular resilience against environmental stress, and optimize charge transfer via precise structure-activity relationships. Furthermore, this review explores the challenges and opportunities in this field, offering a roadmap for the design of durable and high-performance biohybrid systems. Through the integration of conjugated polymers and microorganisms, this review outlines a strategic approach for solar-driven chemical energy conversion, paving the way for eco-friendly energy solutions.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.