具有持久光催化活性的α-Fe2O3纳米颗粒/g-C3N4直接Z-Scheme异质结的制备

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Nano Materials Pub Date : 2025-04-29 eCollection Date: 2025-05-09 DOI:10.1021/acsanm.5c00991
Alejandro Galán-González, Isaías Fernández, Nestor J Zaluzec, Sofie Cambré, Raul Arenal, Ana M Benito, Wolfgang K Maser
{"title":"具有持久光催化活性的α-Fe2O3纳米颗粒/g-C3N4直接Z-Scheme异质结的制备","authors":"Alejandro Galán-González, Isaías Fernández, Nestor J Zaluzec, Sofie Cambré, Raul Arenal, Ana M Benito, Wolfgang K Maser","doi":"10.1021/acsanm.5c00991","DOIUrl":null,"url":null,"abstract":"<p><p>The fabrication of a nanohybrid photocatalyst that combines α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is reported. The ensuing direct Z-scheme heterojunction greatly boosts the photocatalytic activity of the α-Fe<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanohybrids. This results in organic dye degradation rates more than two times higher than its individual components, promoted by the efficient charge separation and transfer of the Z-scheme heterojunction mechanism of the nanohybrid photocatalyst. In addition, recyclability tests show an outstanding stability of the nanohybrids spanning five consecutive dye degradation experiments, during which the degradation rate is slightly improved. The origin of the improved photocatalytic performance of the nanohybrid lies in the intimate interaction between α-Fe<sub>2</sub>O<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub> afforded by the two-step fabrication process, which enables the direct and controlled growth of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub>. A first ultrasound impregnation step promotes the effective anchoring of stable Fe species via Fe-N and C-N/C-O bonding, while a second microwave phase conversion step induces the subsequent growth of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles on the g-C<sub>3</sub>N<sub>4</sub> sheets. Careful control of the FeCl<sub>3</sub> precursor concentration up to a threshold value of 0.25 M during impregnation enables complete control over their size and phase. This approach clearly highlights the benefits of microwave reactor systems in the fabrication of hematite-based Z-scheme photocatalytic, overcoming the limitations of conventional thermal treatment technology.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 18","pages":"9364-9375"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of α-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles/g-C<sub>3</sub>N<sub>4</sub> Direct Z-Scheme Heterojunction of Durable Photocatalytic Activity.\",\"authors\":\"Alejandro Galán-González, Isaías Fernández, Nestor J Zaluzec, Sofie Cambré, Raul Arenal, Ana M Benito, Wolfgang K Maser\",\"doi\":\"10.1021/acsanm.5c00991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fabrication of a nanohybrid photocatalyst that combines α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is reported. The ensuing direct Z-scheme heterojunction greatly boosts the photocatalytic activity of the α-Fe<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> nanohybrids. This results in organic dye degradation rates more than two times higher than its individual components, promoted by the efficient charge separation and transfer of the Z-scheme heterojunction mechanism of the nanohybrid photocatalyst. In addition, recyclability tests show an outstanding stability of the nanohybrids spanning five consecutive dye degradation experiments, during which the degradation rate is slightly improved. The origin of the improved photocatalytic performance of the nanohybrid lies in the intimate interaction between α-Fe<sub>2</sub>O<sub>3</sub> and g-C<sub>3</sub>N<sub>4</sub> afforded by the two-step fabrication process, which enables the direct and controlled growth of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub>. A first ultrasound impregnation step promotes the effective anchoring of stable Fe species via Fe-N and C-N/C-O bonding, while a second microwave phase conversion step induces the subsequent growth of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles on the g-C<sub>3</sub>N<sub>4</sub> sheets. Careful control of the FeCl<sub>3</sub> precursor concentration up to a threshold value of 0.25 M during impregnation enables complete control over their size and phase. This approach clearly highlights the benefits of microwave reactor systems in the fabrication of hematite-based Z-scheme photocatalytic, overcoming the limitations of conventional thermal treatment technology.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 18\",\"pages\":\"9364-9375\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.5c00991\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/9 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.5c00991","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报道了α-Fe2O3纳米粒子与石墨化碳(g-C3N4)复合的纳米杂化光催化剂的制备。由此形成的直接z型异质结大大提高了α-Fe2O3/g-C3N4纳米杂化物的光催化活性。这导致有机染料的降解率比其单个组分高两倍以上,这是由纳米杂化光催化剂的z -图式异质结机制的有效电荷分离和转移所促进的。此外,可回收性测试表明,在连续5次染料降解实验中,纳米杂交种具有出色的稳定性,降解速率略有提高。两步法制备的α-Fe2O3纳米粒子与g-C3N4之间的相互作用使得α-Fe2O3纳米粒子能够在g-C3N4上直接可控地生长,从而提高了纳米杂化物的光催化性能。第一个超声浸渍步骤通过Fe- n和C-N/C-O键促进稳定铁的有效锚定,而第二个微波相转化步骤诱导α-Fe2O3纳米颗粒在g-C3N4薄片上的后续生长。在浸渍过程中,仔细控制FeCl3前驱体浓度至0.25 M的阈值,可以完全控制其尺寸和相。这种方法清楚地强调了微波反应器系统在赤铁矿基z型光催化制造中的优势,克服了传统热处理技术的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of α-Fe2O3 Nanoparticles/g-C3N4 Direct Z-Scheme Heterojunction of Durable Photocatalytic Activity.

The fabrication of a nanohybrid photocatalyst that combines α-Fe2O3 nanoparticles with graphitic carbon nitride (g-C3N4) is reported. The ensuing direct Z-scheme heterojunction greatly boosts the photocatalytic activity of the α-Fe2O3/g-C3N4 nanohybrids. This results in organic dye degradation rates more than two times higher than its individual components, promoted by the efficient charge separation and transfer of the Z-scheme heterojunction mechanism of the nanohybrid photocatalyst. In addition, recyclability tests show an outstanding stability of the nanohybrids spanning five consecutive dye degradation experiments, during which the degradation rate is slightly improved. The origin of the improved photocatalytic performance of the nanohybrid lies in the intimate interaction between α-Fe2O3 and g-C3N4 afforded by the two-step fabrication process, which enables the direct and controlled growth of α-Fe2O3 nanoparticles on g-C3N4. A first ultrasound impregnation step promotes the effective anchoring of stable Fe species via Fe-N and C-N/C-O bonding, while a second microwave phase conversion step induces the subsequent growth of α-Fe2O3 nanoparticles on the g-C3N4 sheets. Careful control of the FeCl3 precursor concentration up to a threshold value of 0.25 M during impregnation enables complete control over their size and phase. This approach clearly highlights the benefits of microwave reactor systems in the fabrication of hematite-based Z-scheme photocatalytic, overcoming the limitations of conventional thermal treatment technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信