高κ金属氧化物衬底上二维MoS2的亚µm热载子扩散。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Dong-Yub Yee, Joonsoo Kim, Saejin Oh, Vu Khac Dat, Annas Syhukri Ariffin, Minh Chien Nguyen, Woo Jong Yu, Jeongyong Kim, Jong Hyun Song, Ji-Hee Kim
{"title":"高κ金属氧化物衬底上二维MoS2的亚µm热载子扩散。","authors":"Dong-Yub Yee, Joonsoo Kim, Saejin Oh, Vu Khac Dat, Annas Syhukri Ariffin, Minh Chien Nguyen, Woo Jong Yu, Jeongyong Kim, Jong Hyun Song, Ji-Hee Kim","doi":"10.1002/smtd.202500435","DOIUrl":null,"url":null,"abstract":"<p><p>Harnessing the potential of hot carriers is a promising approach for advancing the efficiency of photovoltaic and optoelectronic devices. However, their rapid energy dissipation through carrier-phonon scattering and recombination significantly limits practical applications. Dielectric engineering has emerged as a promising strategy to modulate carrier transport properties in low-dimensional materials, including transition metal dichalcogenides. In this study, the impact of dielectric screening is investigated on hot carrier dynamics in monolayer MoS<sub>2</sub> using transient absorption microscopy. The results demonstrate that a high dielectric constant (high-κ) metal-oxide substrate effectively suppresses the Coulomb potential, reducing carrier scattering and recombination while significantly enhancing hot carrier diffusion length and coefficient compared to a conventional quartz substrate. These findings establish dielectric engineering as a powerful tool for improving hot carrier transport without requiring complex material modifications or external stimuli, offering a scalable and efficient strategy for next-generation electronic and optoelectronic devices.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500435"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-µm Hot Carrier Diffusion in 2D MoS<sub>2</sub> on High-κ Metal-Oxide Substrate.\",\"authors\":\"Dong-Yub Yee, Joonsoo Kim, Saejin Oh, Vu Khac Dat, Annas Syhukri Ariffin, Minh Chien Nguyen, Woo Jong Yu, Jeongyong Kim, Jong Hyun Song, Ji-Hee Kim\",\"doi\":\"10.1002/smtd.202500435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Harnessing the potential of hot carriers is a promising approach for advancing the efficiency of photovoltaic and optoelectronic devices. However, their rapid energy dissipation through carrier-phonon scattering and recombination significantly limits practical applications. Dielectric engineering has emerged as a promising strategy to modulate carrier transport properties in low-dimensional materials, including transition metal dichalcogenides. In this study, the impact of dielectric screening is investigated on hot carrier dynamics in monolayer MoS<sub>2</sub> using transient absorption microscopy. The results demonstrate that a high dielectric constant (high-κ) metal-oxide substrate effectively suppresses the Coulomb potential, reducing carrier scattering and recombination while significantly enhancing hot carrier diffusion length and coefficient compared to a conventional quartz substrate. These findings establish dielectric engineering as a powerful tool for improving hot carrier transport without requiring complex material modifications or external stimuli, offering a scalable and efficient strategy for next-generation electronic and optoelectronic devices.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500435\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500435\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用热载流子的潜力是提高光伏和光电子器件效率的一种有前途的方法。然而,它们通过载流子-声子散射和重组的快速能量耗散极大地限制了实际应用。介电工程已成为一种有前途的策略,以调节载流子输运性质的低维材料,包括过渡金属二硫族化合物。在本研究中,利用瞬态吸收显微镜研究了介质筛选对单层二硫化钼热载流子动力学的影响。结果表明,与传统石英衬底相比,高介电常数(高κ)金属氧化物衬底有效地抑制了库仑电位,减少了载流子散射和复合,同时显著提高了热载流子扩散长度和系数。这些发现奠定了电介质工程作为改善热载流子传输的强大工具,无需复杂的材料修改或外部刺激,为下一代电子和光电子器件提供了可扩展和高效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-µm Hot Carrier Diffusion in 2D MoS2 on High-κ Metal-Oxide Substrate.

Harnessing the potential of hot carriers is a promising approach for advancing the efficiency of photovoltaic and optoelectronic devices. However, their rapid energy dissipation through carrier-phonon scattering and recombination significantly limits practical applications. Dielectric engineering has emerged as a promising strategy to modulate carrier transport properties in low-dimensional materials, including transition metal dichalcogenides. In this study, the impact of dielectric screening is investigated on hot carrier dynamics in monolayer MoS2 using transient absorption microscopy. The results demonstrate that a high dielectric constant (high-κ) metal-oxide substrate effectively suppresses the Coulomb potential, reducing carrier scattering and recombination while significantly enhancing hot carrier diffusion length and coefficient compared to a conventional quartz substrate. These findings establish dielectric engineering as a powerful tool for improving hot carrier transport without requiring complex material modifications or external stimuli, offering a scalable and efficient strategy for next-generation electronic and optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信