Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali
{"title":"人工细菌生物膜的流变学表征和三维制备。","authors":"Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali","doi":"10.1021/acsbiomaterials.5c00223","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of <i>Salmonella</i> Typhimurium. We explore the effects of increasing <i>S</i>. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 10<sup>7</sup> CFU mL<sup>-1</sup> has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 10<sup>10</sup> CFU mL<sup>-1</sup> significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of <i>in vitro</i> tissue models that incorporate biofilms for high-throughput therapeutic screening.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological Characterization and 3D Fabrication of Artificial Bacterial Biofilms.\",\"authors\":\"Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali\",\"doi\":\"10.1021/acsbiomaterials.5c00223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of <i>Salmonella</i> Typhimurium. We explore the effects of increasing <i>S</i>. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 10<sup>7</sup> CFU mL<sup>-1</sup> has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 10<sup>10</sup> CFU mL<sup>-1</sup> significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of <i>in vitro</i> tissue models that incorporate biofilms for high-throughput therapeutic screening.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00223\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Rheological Characterization and 3D Fabrication of Artificial Bacterial Biofilms.
Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of Salmonella Typhimurium. We explore the effects of increasing S. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 107 CFU mL-1 has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 1010 CFU mL-1 significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of in vitro tissue models that incorporate biofilms for high-throughput therapeutic screening.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture