人工细菌生物膜的流变学表征和三维制备。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali
{"title":"人工细菌生物膜的流变学表征和三维制备。","authors":"Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali","doi":"10.1021/acsbiomaterials.5c00223","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of <i>Salmonella</i> Typhimurium. We explore the effects of increasing <i>S</i>. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 10<sup>7</sup> CFU mL<sup>-1</sup> has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 10<sup>10</sup> CFU mL<sup>-1</sup> significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of <i>in vitro</i> tissue models that incorporate biofilms for high-throughput therapeutic screening.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheological Characterization and 3D Fabrication of Artificial Bacterial Biofilms.\",\"authors\":\"Annie Scutte, Kiram Harrison, Tyler Gregory, David Quashie, Subramanian Ramakrishnan, Jamel Ali\",\"doi\":\"10.1021/acsbiomaterials.5c00223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of <i>Salmonella</i> Typhimurium. We explore the effects of increasing <i>S</i>. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 10<sup>7</sup> CFU mL<sup>-1</sup> has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 10<sup>10</sup> CFU mL<sup>-1</sup> significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of <i>in vitro</i> tissue models that incorporate biofilms for high-throughput therapeutic screening.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00223\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

由于生物膜粘附软组织的能力,生物膜在许多疾病的进展中起着重要作用,如癌症和上呼吸道感染。影响生物膜发育的因素在平面基质上得到了广泛的研究;然而,对生物膜生长和3D基质内的相互作用的理解有限。开发生物膜模型,密切模仿天然细菌群落在软组织中的化学和机械特性,对于开发下一代抗菌化合物和治疗方法至关重要,因为3D生物膜比2D生物膜更复杂,更不容易受到治疗。在这里,为了了解三维基质环境中环境粘弹性对生物膜的影响,配制了两种海藻酸盐基水凝胶,并用于包封不同浓度的鼠伤寒沙门氏菌。我们探讨了增加鼠伤寒沙门氏菌浓度对水凝胶流变特性的影响,并评估了打印参数对细菌活力的影响。结果表明,水凝胶具有剪切变稀的特性,当细菌浓度达到1 × 107 CFU mL-1时,对水凝胶前驱体模量和低剪切粘度没有显著影响。然而,当细菌浓度增加到1 × 1010 CFU mL-1时,水凝胶剪切粘度和模量显著降低。利用基于挤压的生物打印技术,在4天的孵育期内,最佳打印参数(Pr > 0.8)对细菌活力的影响最小(>80%)。此外,我们发现随着时间的推移,较低浓度的细菌比具有较高细胞浓度的水凝胶形成更大的聚集体。我们表明,生物膜生长在三维取决于初始细菌密度和基质硬度。进一步发展物理化学调整的生物打印细菌群落将有助于我们了解细菌在其3D环境中的相互作用,并使结合生物膜的体外组织模型能够用于高通量治疗筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological Characterization and 3D Fabrication of Artificial Bacterial Biofilms.

Biofilms are significantly involved in the progression of many diseases, such as cancer and upper respiratory infections, due to their ability to adhere to soft tissues. Factors influencing biofilm development have been extensively studied on planar substrates; however, there is limited understanding regarding biofilm growth and interactions within 3D matrices. Developing biofilm models that closely mimic natural bacterial communities' chemical and mechanical properties in soft tissues is essential for developing next-generation antibacterial compounds and therapeutics, as 3D biofilms are more complex and less susceptible to treatment than their 2D counterparts. Here, to understand environmental viscoelastic effects on biofilms within 3D matrix environments, two types of alginate-based hydrogels are formulated and used to encapsulatevarying concentrations of Salmonella Typhimurium. We explore the effects of increasing S. Typhimurium concentrations on hydrogel rheological properties and assess the impact of printing parameters on bacterial viability. Results show that hydrogels exhibit shear thinning behavior and that increasing the bacterial concentration up to 1 × 107 CFU mL-1 has no significant effect on the hydrogel precursor moduli and low shear viscosity. However, increasing the bacterial concentration to 1 × 1010 CFU mL-1 significantly decreases the hydrogel shear viscosity and modulus. Utilizing extrusion-based bioprinting, the optimal printing parameters (Pr > 0.8) have minimal effects on bacterial viability (>80%) over a 4 day incubation period. Additionally, we find that lower concentrations of bacteria form larger aggregates over time than hydrogels with higher cell concentrations. We show that biofilm growth in 3D depends on both initial bacterial density and matrix rigidity. Further development of physicochemically tuned bioprinted bacterial communities will aid our understanding of bacterial interactions within their 3D environments and enable the use of in vitro tissue models that incorporate biofilms for high-throughput therapeutic screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信