{"title":"用于极端环境探索的神经形态色度通信环路中的氧化物半导体","authors":"Shangda Qu, Qianbo Yu, Chengpeng Jiang, Taoyu Zou, Honghuan Xu, Longlong Zhang, Mengze Tao, Qingshan Zhu, Song Zhang, Cong Geng, Mingjian Yuan, Yong-Young Noh, Wentao Xu","doi":"10.1126/sciadv.adu3576","DOIUrl":null,"url":null,"abstract":"<div >Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (~10<sup>4</sup> seconds) and high-dose (~5 × 10<sup>15</sup> ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3576","citationCount":"0","resultStr":"{\"title\":\"Oxide semiconductor in a neuromorphic chromaticity communication loop for extreme environment exploration\",\"authors\":\"Shangda Qu, Qianbo Yu, Chengpeng Jiang, Taoyu Zou, Honghuan Xu, Longlong Zhang, Mengze Tao, Qingshan Zhu, Song Zhang, Cong Geng, Mingjian Yuan, Yong-Young Noh, Wentao Xu\",\"doi\":\"10.1126/sciadv.adu3576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (~10<sup>4</sup> seconds) and high-dose (~5 × 10<sup>15</sup> ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu3576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu3576\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3576","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Oxide semiconductor in a neuromorphic chromaticity communication loop for extreme environment exploration
Space exploration, particularly in the extreme space environment, has gained increasing attention. Networked robots capable of real-time environmental perception and autonomous collaboration offer a promising alternative for executing complex precision tasks. Consequently, achieving local reliable communication and preparing irradiation-tolerant materials are essential. Here, we demonstrate a cephalopod-inspired neuromorphic loop that enables chromaticity communication between individual near-sensor processing units. A programmatically aligned aluminum zinc oxide nanofiber array was fabricated and used as conductive channels that can withstand prolonged (~104 seconds) and high-dose (~5 × 1015 ions per square centimeter) proton irradiation. The neuromorphic loop, with capabilities in environmental perception, event-driven processing, adaptive learning, and chromaticity communication, enables the self-driven collaboration of robotic hands based on tactile feedback and ensures reliable mobile links for drone flight control. This work pioneers a direction in neuromorphic visible light communication and marks important progress in the field of biomimetic intelligence.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.