单向分子旋转马达,可远程切换旋转方向

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kamil Szychta, Wojciech Danowski, Joanna Jankowska
{"title":"单向分子旋转马达,可远程切换旋转方向","authors":"Kamil Szychta,&nbsp;Wojciech Danowski,&nbsp;Joanna Jankowska","doi":"10.1126/sciadv.adt8008","DOIUrl":null,"url":null,"abstract":"<div >Light-driven rotary motors allow direct transformation of light energy into rotary motion at the nanoscale, giving rise to countless emerging applications in molecular engineering. The key feature enabling the unidirectional rotation and controlling its direction is the motor chirality, a factor hard to modify postsynthetically. Here, we propose a motor architecture, E-motor, whose operation direction can be switched remotely with an electric field pulse, without the need for chemical intervention. Our study relies on quantum chemical calculations and nonadiabatic molecular dynamics simulations performed for a specifically tailored system, PFCN, designed to provide illustration for the proposed motor type. We show that the PFCN chirality depends on the orientation of a covalently bound polar switching unit, which can be controlled with the electric field. At the same time, the proposed system manifests all characteristic photophysical properties of a molecular motor, and its set chirality is preserved during operation in the absence of the field.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt8008","citationCount":"0","resultStr":"{\"title\":\"Unidirectional molecular rotary motor with remotely switchable rotation direction\",\"authors\":\"Kamil Szychta,&nbsp;Wojciech Danowski,&nbsp;Joanna Jankowska\",\"doi\":\"10.1126/sciadv.adt8008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Light-driven rotary motors allow direct transformation of light energy into rotary motion at the nanoscale, giving rise to countless emerging applications in molecular engineering. The key feature enabling the unidirectional rotation and controlling its direction is the motor chirality, a factor hard to modify postsynthetically. Here, we propose a motor architecture, E-motor, whose operation direction can be switched remotely with an electric field pulse, without the need for chemical intervention. Our study relies on quantum chemical calculations and nonadiabatic molecular dynamics simulations performed for a specifically tailored system, PFCN, designed to provide illustration for the proposed motor type. We show that the PFCN chirality depends on the orientation of a covalently bound polar switching unit, which can be controlled with the electric field. At the same time, the proposed system manifests all characteristic photophysical properties of a molecular motor, and its set chirality is preserved during operation in the absence of the field.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt8008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt8008\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt8008","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光驱动旋转电机可以将光能直接转化为纳米级的旋转运动,从而在分子工程中产生了无数的新兴应用。实现单向旋转和控制其方向的关键特征是电机手性,这是一个难以综合修改的因素。在这里,我们提出了一种电机结构,E-motor,其操作方向可以通过电场脉冲远程切换,而无需化学干预。我们的研究依赖于量子化学计算和非绝热分子动力学模拟,对一个专门定制的系统PFCN进行了模拟,旨在为提议的电机类型提供说明。我们证明了PFCN的手性取决于共价键极性开关单元的取向,这可以用电场来控制。同时,该系统体现了分子马达的所有光物理特性,并且在没有电场的情况下保持了手性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unidirectional molecular rotary motor with remotely switchable rotation direction
Light-driven rotary motors allow direct transformation of light energy into rotary motion at the nanoscale, giving rise to countless emerging applications in molecular engineering. The key feature enabling the unidirectional rotation and controlling its direction is the motor chirality, a factor hard to modify postsynthetically. Here, we propose a motor architecture, E-motor, whose operation direction can be switched remotely with an electric field pulse, without the need for chemical intervention. Our study relies on quantum chemical calculations and nonadiabatic molecular dynamics simulations performed for a specifically tailored system, PFCN, designed to provide illustration for the proposed motor type. We show that the PFCN chirality depends on the orientation of a covalently bound polar switching unit, which can be controlled with the electric field. At the same time, the proposed system manifests all characteristic photophysical properties of a molecular motor, and its set chirality is preserved during operation in the absence of the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信