液滴中三维粒子操纵的声流自旋控制

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chuyi Chen, Yuyang Gu, Joseph Rufo, Jinxin Zhang, Kaichun Yang, Ying Chen, Luke P. Lee, Tony Jun Huang
{"title":"液滴中三维粒子操纵的声流自旋控制","authors":"Chuyi Chen,&nbsp;Yuyang Gu,&nbsp;Joseph Rufo,&nbsp;Jinxin Zhang,&nbsp;Kaichun Yang,&nbsp;Ying Chen,&nbsp;Luke P. Lee,&nbsp;Tony Jun Huang","doi":"10.1126/sciadv.adx0269","DOIUrl":null,"url":null,"abstract":"<div >The rotation of objects and corresponding dynamic systems plays a critical role in applications ranging from microscale droplet-based biochemical assays to nanoscale fluid transport and targeted drug delivery. However, directly observing and controlling these rotational phenomena across these different scales remains a challenge. Here, we introduce an acoustofluidic spinning control method that dynamically guides particles into three-dimensional, periodic spatial patterns within a droplet. Using surface acoustic waves, we induce internal streaming that generates centrifugal forces counteracted by surface tension, leading to the formation of rotating Stokes waves along the droplet’s equator. We show that fluid motion inside the droplet couples with these rotating waves, giving rise to a controllable superimposed helical particle orbit. These findings provide a platform for controlled rotational flows with potential applications in droplet-based microfluidics, biochemical processing, and tunable particle transport in lab-on-a-chip systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx0269","citationCount":"0","resultStr":"{\"title\":\"Acoustofluidic spin control for 3D particle manipulation in droplets\",\"authors\":\"Chuyi Chen,&nbsp;Yuyang Gu,&nbsp;Joseph Rufo,&nbsp;Jinxin Zhang,&nbsp;Kaichun Yang,&nbsp;Ying Chen,&nbsp;Luke P. Lee,&nbsp;Tony Jun Huang\",\"doi\":\"10.1126/sciadv.adx0269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The rotation of objects and corresponding dynamic systems plays a critical role in applications ranging from microscale droplet-based biochemical assays to nanoscale fluid transport and targeted drug delivery. However, directly observing and controlling these rotational phenomena across these different scales remains a challenge. Here, we introduce an acoustofluidic spinning control method that dynamically guides particles into three-dimensional, periodic spatial patterns within a droplet. Using surface acoustic waves, we induce internal streaming that generates centrifugal forces counteracted by surface tension, leading to the formation of rotating Stokes waves along the droplet’s equator. We show that fluid motion inside the droplet couples with these rotating waves, giving rise to a controllable superimposed helical particle orbit. These findings provide a platform for controlled rotational flows with potential applications in droplet-based microfluidics, biochemical processing, and tunable particle transport in lab-on-a-chip systems.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx0269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx0269\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx0269","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

物体的旋转和相应的动力学系统在各种应用中起着至关重要的作用,从微尺度的基于液滴的生化分析到纳米尺度的流体输送和靶向药物输送。然而,在这些不同的尺度上直接观察和控制这些旋转现象仍然是一个挑战。本文介绍了一种声流自旋控制方法,该方法可以动态引导粒子进入液滴内的三维周期性空间模式。利用表面声波,我们诱导内部流,产生离心力,被表面张力抵消,导致沿液滴赤道形成旋转的斯托克斯波。我们证明了液滴内部的流体运动与这些旋转波耦合,产生了一个可控的叠加螺旋粒子轨道。这些发现为控制旋转流动提供了一个平台,在基于液滴的微流体、生化处理和芯片实验室系统的可调粒子传输中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustofluidic spin control for 3D particle manipulation in droplets
The rotation of objects and corresponding dynamic systems plays a critical role in applications ranging from microscale droplet-based biochemical assays to nanoscale fluid transport and targeted drug delivery. However, directly observing and controlling these rotational phenomena across these different scales remains a challenge. Here, we introduce an acoustofluidic spinning control method that dynamically guides particles into three-dimensional, periodic spatial patterns within a droplet. Using surface acoustic waves, we induce internal streaming that generates centrifugal forces counteracted by surface tension, leading to the formation of rotating Stokes waves along the droplet’s equator. We show that fluid motion inside the droplet couples with these rotating waves, giving rise to a controllable superimposed helical particle orbit. These findings provide a platform for controlled rotational flows with potential applications in droplet-based microfluidics, biochemical processing, and tunable particle transport in lab-on-a-chip systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信