Olga Rybakova, Josef Reisinger, Philipp Rieser, Philipp Geyer, Stefan Gerlich, Markus Arndt, Amal Kumar, Daniel Häussinger, Marcel Mayor, Valentin Köhler
{"title":"用于量子光学的光可切割卟啉衍生物","authors":"Olga Rybakova, Josef Reisinger, Philipp Rieser, Philipp Geyer, Stefan Gerlich, Markus Arndt, Amal Kumar, Daniel Häussinger, Marcel Mayor, Valentin Köhler","doi":"10.1002/hlca.202500022","DOIUrl":null,"url":null,"abstract":"<p>Optical control of molecular beams is intriguing as it promises to become a new tool for mass spectrometry and quantum interferometry, where a single or two photons deterministically remove a tailored tag from a larger molecular structure, e. g., a polypeptide. This cleavage process can change the charge state of the macromolecule, provide reporting signals for both fragments by mass spectrometry and it can selectively remove the fragments from a molecular beam by the momentum recoil generated in the dissociation process. Here, we explore a series of porphyrin derivatives as candidates for photocleavage in the gas phase. They share a large, conjugated core which promises a high absorption cross section for visible light. We present the individualization and beam formation of candidate molecules and study their photo-dissociation under tunable, visible radiation. We observe a significant wavelength shift and broadening in the photocleavage cross section for molecules in the gas phase compared to those in solution and we find that a single photon can suffice to trigger the cleavage process.</p>","PeriodicalId":12842,"journal":{"name":"Helvetica Chimica Acta","volume":"108 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202500022","citationCount":"0","resultStr":"{\"title\":\"Photocleavable Porphyrin Derivatives for Quantum Optics\",\"authors\":\"Olga Rybakova, Josef Reisinger, Philipp Rieser, Philipp Geyer, Stefan Gerlich, Markus Arndt, Amal Kumar, Daniel Häussinger, Marcel Mayor, Valentin Köhler\",\"doi\":\"10.1002/hlca.202500022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical control of molecular beams is intriguing as it promises to become a new tool for mass spectrometry and quantum interferometry, where a single or two photons deterministically remove a tailored tag from a larger molecular structure, e. g., a polypeptide. This cleavage process can change the charge state of the macromolecule, provide reporting signals for both fragments by mass spectrometry and it can selectively remove the fragments from a molecular beam by the momentum recoil generated in the dissociation process. Here, we explore a series of porphyrin derivatives as candidates for photocleavage in the gas phase. They share a large, conjugated core which promises a high absorption cross section for visible light. We present the individualization and beam formation of candidate molecules and study their photo-dissociation under tunable, visible radiation. We observe a significant wavelength shift and broadening in the photocleavage cross section for molecules in the gas phase compared to those in solution and we find that a single photon can suffice to trigger the cleavage process.</p>\",\"PeriodicalId\":12842,\"journal\":{\"name\":\"Helvetica Chimica Acta\",\"volume\":\"108 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202500022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helvetica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202500022\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helvetica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202500022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Photocleavable Porphyrin Derivatives for Quantum Optics
Optical control of molecular beams is intriguing as it promises to become a new tool for mass spectrometry and quantum interferometry, where a single or two photons deterministically remove a tailored tag from a larger molecular structure, e. g., a polypeptide. This cleavage process can change the charge state of the macromolecule, provide reporting signals for both fragments by mass spectrometry and it can selectively remove the fragments from a molecular beam by the momentum recoil generated in the dissociation process. Here, we explore a series of porphyrin derivatives as candidates for photocleavage in the gas phase. They share a large, conjugated core which promises a high absorption cross section for visible light. We present the individualization and beam formation of candidate molecules and study their photo-dissociation under tunable, visible radiation. We observe a significant wavelength shift and broadening in the photocleavage cross section for molecules in the gas phase compared to those in solution and we find that a single photon can suffice to trigger the cleavage process.
期刊介绍:
Helvetica Chimica Acta, founded by the Swiss Chemical Society in 1917, is a monthly multidisciplinary journal dedicated to the dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences, where molecular aspects are key to the findings. Helvetica Chimica Acta is committed to the publication of original, high quality papers at the frontier of scientific research. All contributions will be peer reviewed with the highest possible standards and published within 3 months of receipt, with no restriction on the length of the papers and in full color.