心磷脂在胶质母细胞瘤中的失调——对线粒体功能、肿瘤细胞死亡和线粒体靶向药物敏感性的影响

IF 4.5 2区 生物学 Q2 CELL BIOLOGY
Jean-Jacques Hunter, Luis Del Valle, Francesca Peruzzi, Krzysztof Reiss
{"title":"心磷脂在胶质母细胞瘤中的失调——对线粒体功能、肿瘤细胞死亡和线粒体靶向药物敏感性的影响","authors":"Jean-Jacques Hunter,&nbsp;Luis Del Valle,&nbsp;Francesca Peruzzi,&nbsp;Krzysztof Reiss","doi":"10.1002/jcp.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biological systems do not exist in isolation. Analogous to the intricate design of a spider web, the metabolic adaptations propagated by glioblastoma cells are interlaced, creating a “defense mechanism” that increases the likelihood of mutagenesis and proliferation, while mitigating stress-induced tumor cell death and immune evasion. Previous studies have observed the role of cardiolipin (CL) in the electron transport chain (ETC) function and several other intracellular signaling pathways. Our review provides a synopsis of the existing knowledge about CL in glioblastoma and its complex relationship with metabolic reprogramming at the subcellular level. Through a meticulous examination of CL defects due to its biogenesis and stress-induced modifications, we seek to elucidate the multifaceted connections between aberrant CL variants and the metabolic alterations that underlie glioblastoma progression. A comprehensive grasp of these mechanisms could provide future direction in designing chemotherapeutic agents that selectively target glioblastoma, are less harmful to normal cells, and therefore, may extend patient survival.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiolipin Dysregulation in Glioblastoma—Effects on Mitochondrial Function Tumor Cell Death and Sensitivity to Mitochondria-Targeting Drugs\",\"authors\":\"Jean-Jacques Hunter,&nbsp;Luis Del Valle,&nbsp;Francesca Peruzzi,&nbsp;Krzysztof Reiss\",\"doi\":\"10.1002/jcp.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Biological systems do not exist in isolation. Analogous to the intricate design of a spider web, the metabolic adaptations propagated by glioblastoma cells are interlaced, creating a “defense mechanism” that increases the likelihood of mutagenesis and proliferation, while mitigating stress-induced tumor cell death and immune evasion. Previous studies have observed the role of cardiolipin (CL) in the electron transport chain (ETC) function and several other intracellular signaling pathways. Our review provides a synopsis of the existing knowledge about CL in glioblastoma and its complex relationship with metabolic reprogramming at the subcellular level. Through a meticulous examination of CL defects due to its biogenesis and stress-induced modifications, we seek to elucidate the multifaceted connections between aberrant CL variants and the metabolic alterations that underlie glioblastoma progression. A comprehensive grasp of these mechanisms could provide future direction in designing chemotherapeutic agents that selectively target glioblastoma, are less harmful to normal cells, and therefore, may extend patient survival.</p>\\n </div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 5\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70045\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物系统不是孤立存在的。类似于蜘蛛网的复杂设计,胶质母细胞瘤细胞传播的代谢适应是交错的,创造了一种“防御机制”,增加了突变和增殖的可能性,同时减轻了应激诱导的肿瘤细胞死亡和免疫逃逸。先前的研究已经观察到心磷脂(CL)在电子传递链(ETC)功能和其他几种细胞内信号通路中的作用。我们的综述概述了胶质母细胞瘤中CL的现有知识及其与亚细胞水平上代谢重编程的复杂关系。通过细致的检查由于其生物发生和应激诱导的修饰的CL缺陷,我们试图阐明异常CL变异和胶质母细胞瘤进展背后的代谢改变之间的多方面联系。全面掌握这些机制可以为设计选择性靶向胶质母细胞瘤的化疗药物提供方向,这些药物对正常细胞的危害较小,因此可能延长患者的生存期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiolipin Dysregulation in Glioblastoma—Effects on Mitochondrial Function Tumor Cell Death and Sensitivity to Mitochondria-Targeting Drugs

Biological systems do not exist in isolation. Analogous to the intricate design of a spider web, the metabolic adaptations propagated by glioblastoma cells are interlaced, creating a “defense mechanism” that increases the likelihood of mutagenesis and proliferation, while mitigating stress-induced tumor cell death and immune evasion. Previous studies have observed the role of cardiolipin (CL) in the electron transport chain (ETC) function and several other intracellular signaling pathways. Our review provides a synopsis of the existing knowledge about CL in glioblastoma and its complex relationship with metabolic reprogramming at the subcellular level. Through a meticulous examination of CL defects due to its biogenesis and stress-induced modifications, we seek to elucidate the multifaceted connections between aberrant CL variants and the metabolic alterations that underlie glioblastoma progression. A comprehensive grasp of these mechanisms could provide future direction in designing chemotherapeutic agents that selectively target glioblastoma, are less harmful to normal cells, and therefore, may extend patient survival.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信