光栅角度对3D打印聚乳酸/热塑性聚氨酯共混物的影响:对机械和形状记忆性能的影响

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Águeda Sonseca Olalla, Joaquín Lluch Cerezo, Vicente Ruedas Abarca, Lucas Rovira Soriano, Guido Mazzinari, Enrique Giménez Torres
{"title":"光栅角度对3D打印聚乳酸/热塑性聚氨酯共混物的影响:对机械和形状记忆性能的影响","authors":"Águeda Sonseca Olalla,&nbsp;Joaquín Lluch Cerezo,&nbsp;Vicente Ruedas Abarca,&nbsp;Lucas Rovira Soriano,&nbsp;Guido Mazzinari,&nbsp;Enrique Giménez Torres","doi":"10.1002/mame.202400427","DOIUrl":null,"url":null,"abstract":"<p>In this study, a 60:40 blend of poly(lactic acid) and thermoplastic polyurethane (PLA/TPU) is fabricated using fused material extrusion. The morphological, thermal, mechanical and thermoresponsive cyclic shape memory effect (SME) characteristics of 3D-printed specimens at various raster angles are investigated. This work introduces the innovative utilization of TPU's fibrillar alignment within a PLA matrix to achieve enhanced mechanical anisotropy and consistent shape memory performance. Morphological analysis reveals excellent printability, with the immiscible TPU phase forming submicron-diameter fibrils (≈0.78 ± µm) within the PLA matrix, leading to significant improvements in toughness and elongation at break when aligned with the printing direction and the load. Tensile test demonstrates anisotropy, with 0° raster specimens achieving a UTS of 16.1 ± 0.2 MPa and elongation at 305.5 ± 71.9%, compared to 4.5 ± 0.6 MPa and 10.8 ± 1.5% at 90°. Notably, despite the mechanical anisotropy, shape fixity ratios exceeded 95% and recovery ratios between 91 and 95% were achieved across all raster angles, demonstrating robustness in thermomechanical properties. These findings offer valuable insights into the relationship between morphology, mechanical characteristics, and shape memory behavior of PLA/TPU blends fabricated using fused material extrusion, positioning the material as a strong candidate for biomedical applications requiring precise shape recovery performance.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400427","citationCount":"0","resultStr":"{\"title\":\"Impact of Raster Angle on 3D Printing of Poly(Lactic Acid)/Thermoplastic Polyurethane Blends: Effects on Mechanical and Shape Memory Properties\",\"authors\":\"Águeda Sonseca Olalla,&nbsp;Joaquín Lluch Cerezo,&nbsp;Vicente Ruedas Abarca,&nbsp;Lucas Rovira Soriano,&nbsp;Guido Mazzinari,&nbsp;Enrique Giménez Torres\",\"doi\":\"10.1002/mame.202400427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a 60:40 blend of poly(lactic acid) and thermoplastic polyurethane (PLA/TPU) is fabricated using fused material extrusion. The morphological, thermal, mechanical and thermoresponsive cyclic shape memory effect (SME) characteristics of 3D-printed specimens at various raster angles are investigated. This work introduces the innovative utilization of TPU's fibrillar alignment within a PLA matrix to achieve enhanced mechanical anisotropy and consistent shape memory performance. Morphological analysis reveals excellent printability, with the immiscible TPU phase forming submicron-diameter fibrils (≈0.78 ± µm) within the PLA matrix, leading to significant improvements in toughness and elongation at break when aligned with the printing direction and the load. Tensile test demonstrates anisotropy, with 0° raster specimens achieving a UTS of 16.1 ± 0.2 MPa and elongation at 305.5 ± 71.9%, compared to 4.5 ± 0.6 MPa and 10.8 ± 1.5% at 90°. Notably, despite the mechanical anisotropy, shape fixity ratios exceeded 95% and recovery ratios between 91 and 95% were achieved across all raster angles, demonstrating robustness in thermomechanical properties. These findings offer valuable insights into the relationship between morphology, mechanical characteristics, and shape memory behavior of PLA/TPU blends fabricated using fused material extrusion, positioning the material as a strong candidate for biomedical applications requiring precise shape recovery performance.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400427\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400427\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,采用熔融材料挤出法制备了60:40的聚乳酸和热塑性聚氨酯(PLA/TPU)共混物。研究了3d打印样品在不同光栅角度下的形态、热、力学和热响应循环形状记忆效应(SME)特性。这项工作介绍了TPU在PLA矩阵中的纤维排列的创新利用,以实现增强的机械各向异性和一致的形状记忆性能。形态学分析显示了优异的打印性能,不混溶的TPU相在PLA基体内形成亚微米直径的原纤维(≈0.78±µm),当与打印方向和负载一致时,韧性和断裂伸长率显著提高。拉伸试验显示出各向异性,0°栅格试样的拉伸强度为16.1±0.2 MPa,伸长率为305.5±71.9%,而90°栅格试样的拉伸强度为4.5±0.6 MPa,伸长率为10.8±1.5%。值得注意的是,尽管具有机械各向异性,但在所有光栅角度下,形状固定性比都超过95%,回复率在91 - 95%之间,显示出热机械性能的稳健性。这些发现为使用熔融材料挤压制造的PLA/TPU共混物的形态、机械特性和形状记忆行为之间的关系提供了有价值的见解,将该材料定位为需要精确形状恢复性能的生物医学应用的有力候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of Raster Angle on 3D Printing of Poly(Lactic Acid)/Thermoplastic Polyurethane Blends: Effects on Mechanical and Shape Memory Properties

Impact of Raster Angle on 3D Printing of Poly(Lactic Acid)/Thermoplastic Polyurethane Blends: Effects on Mechanical and Shape Memory Properties

In this study, a 60:40 blend of poly(lactic acid) and thermoplastic polyurethane (PLA/TPU) is fabricated using fused material extrusion. The morphological, thermal, mechanical and thermoresponsive cyclic shape memory effect (SME) characteristics of 3D-printed specimens at various raster angles are investigated. This work introduces the innovative utilization of TPU's fibrillar alignment within a PLA matrix to achieve enhanced mechanical anisotropy and consistent shape memory performance. Morphological analysis reveals excellent printability, with the immiscible TPU phase forming submicron-diameter fibrils (≈0.78 ± µm) within the PLA matrix, leading to significant improvements in toughness and elongation at break when aligned with the printing direction and the load. Tensile test demonstrates anisotropy, with 0° raster specimens achieving a UTS of 16.1 ± 0.2 MPa and elongation at 305.5 ± 71.9%, compared to 4.5 ± 0.6 MPa and 10.8 ± 1.5% at 90°. Notably, despite the mechanical anisotropy, shape fixity ratios exceeded 95% and recovery ratios between 91 and 95% were achieved across all raster angles, demonstrating robustness in thermomechanical properties. These findings offer valuable insights into the relationship between morphology, mechanical characteristics, and shape memory behavior of PLA/TPU blends fabricated using fused material extrusion, positioning the material as a strong candidate for biomedical applications requiring precise shape recovery performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信