Kim Greis, Linus F. Busse, Lukas R. Benzenberg, Ri Wu, Renato Zenobi
{"title":"在碰撞或光子激活后肽的天然性如何?气相FRET研究","authors":"Kim Greis, Linus F. Busse, Lukas R. Benzenberg, Ri Wu, Renato Zenobi","doi":"10.1002/hlca.202500043","DOIUrl":null,"url":null,"abstract":"<p>Native mass spectrometry ionizes biomolecules from aqueous buffered solutions using electrospray ionization. Collisions and lasers are often used to study the structures of such native biomolecular ions. While structural changes upon collisions have been studied in more detail, interactions with photons mostly comprise fragmentation. It remains unclear to what degree biomolecular ions undergo unfolding until cleavage. Here, gas-phase Förster resonance energy transfer (FRET) is used to study fluorescence lifetimes of a 32-residue α-helical peptide to monitor peptide unfolding. Increases in lifetime of up to 1.2 ns per charge are observed for different charge states, showing that a low charge is necessary for peptides to retain a compact structure. Increases in lifetime by up to 0.5 ns are observed upon collisional and laser-based activation and show that the peptide is partially unfolding upon activation. The results contribute to understanding the unfolding dynamics of biomolecules upon activation in mass spectrometry experiments.</p>","PeriodicalId":12842,"journal":{"name":"Helvetica Chimica Acta","volume":"108 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Native Are Peptides After Activation by Collisions or Photons? A Gas-Phase FRET Study\",\"authors\":\"Kim Greis, Linus F. Busse, Lukas R. Benzenberg, Ri Wu, Renato Zenobi\",\"doi\":\"10.1002/hlca.202500043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Native mass spectrometry ionizes biomolecules from aqueous buffered solutions using electrospray ionization. Collisions and lasers are often used to study the structures of such native biomolecular ions. While structural changes upon collisions have been studied in more detail, interactions with photons mostly comprise fragmentation. It remains unclear to what degree biomolecular ions undergo unfolding until cleavage. Here, gas-phase Förster resonance energy transfer (FRET) is used to study fluorescence lifetimes of a 32-residue α-helical peptide to monitor peptide unfolding. Increases in lifetime of up to 1.2 ns per charge are observed for different charge states, showing that a low charge is necessary for peptides to retain a compact structure. Increases in lifetime by up to 0.5 ns are observed upon collisional and laser-based activation and show that the peptide is partially unfolding upon activation. The results contribute to understanding the unfolding dynamics of biomolecules upon activation in mass spectrometry experiments.</p>\",\"PeriodicalId\":12842,\"journal\":{\"name\":\"Helvetica Chimica Acta\",\"volume\":\"108 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helvetica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202500043\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helvetica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202500043","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
How Native Are Peptides After Activation by Collisions or Photons? A Gas-Phase FRET Study
Native mass spectrometry ionizes biomolecules from aqueous buffered solutions using electrospray ionization. Collisions and lasers are often used to study the structures of such native biomolecular ions. While structural changes upon collisions have been studied in more detail, interactions with photons mostly comprise fragmentation. It remains unclear to what degree biomolecular ions undergo unfolding until cleavage. Here, gas-phase Förster resonance energy transfer (FRET) is used to study fluorescence lifetimes of a 32-residue α-helical peptide to monitor peptide unfolding. Increases in lifetime of up to 1.2 ns per charge are observed for different charge states, showing that a low charge is necessary for peptides to retain a compact structure. Increases in lifetime by up to 0.5 ns are observed upon collisional and laser-based activation and show that the peptide is partially unfolding upon activation. The results contribute to understanding the unfolding dynamics of biomolecules upon activation in mass spectrometry experiments.
期刊介绍:
Helvetica Chimica Acta, founded by the Swiss Chemical Society in 1917, is a monthly multidisciplinary journal dedicated to the dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences, where molecular aspects are key to the findings. Helvetica Chimica Acta is committed to the publication of original, high quality papers at the frontier of scientific research. All contributions will be peer reviewed with the highest possible standards and published within 3 months of receipt, with no restriction on the length of the papers and in full color.