Shan Qiao, Xingyu Fang, Junbo Wang, Ran Zhang, Xiaoming Li, Yuhao Kang
{"title":"在孕产妇健康研究中用于专题分析的生成人工智能:使用大型语言模型编写半结构化访谈","authors":"Shan Qiao, Xingyu Fang, Junbo Wang, Ran Zhang, Xiaoming Li, Yuhao Kang","doi":"10.1111/aphw.70038","DOIUrl":null,"url":null,"abstract":"<p><b>Study Objectives</b>: The coding of semistructured interview transcripts is a critical step for thematic analysis of qualitative data. However, the coding process is often labor-intensive and time-consuming. The emergence of generative artificial intelligence (GenAI) presents new opportunities to enhance the efficiency of qualitative coding. This study proposed a computational pipeline using GenAI to automatically extract themes from interview transcripts. <b>Methods</b>: Using transcripts from interviews conducted with maternity care providers in South Carolina, we leveraged ChatGPT for inductive coding to generate codes from interview transcripts without a predetermined coding scheme. Structured prompts were designed to instruct ChatGPT to generate and summarize codes. The performance of GenAI was evaluated by comparing the AI-generated codes with those generated manually. <b>Results</b>: GenAI demonstrated promise in detecting and summarizing codes from interview transcripts. ChatGPT exhibited an overall accuracy exceeding 80% in inductive coding. More impressively, GenAI reduced the time required for coding by 81%. <b>Discussion</b>: GenAI models are capable of efficiently processing language datasets and performing multi-level semantic identification. However, challenges such as inaccuracy, systematic biases, and privacy concerns must be acknowledged and addressed. Future research should focus on refining these models to enhance reliability and address inherent limitations associated with their application in qualitative research.</p>","PeriodicalId":8127,"journal":{"name":"Applied psychology. Health and well-being","volume":"17 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aphw.70038","citationCount":"0","resultStr":"{\"title\":\"Generative AI for thematic analysis in a maternal health study: coding semistructured interviews using large language models\",\"authors\":\"Shan Qiao, Xingyu Fang, Junbo Wang, Ran Zhang, Xiaoming Li, Yuhao Kang\",\"doi\":\"10.1111/aphw.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Study Objectives</b>: The coding of semistructured interview transcripts is a critical step for thematic analysis of qualitative data. However, the coding process is often labor-intensive and time-consuming. The emergence of generative artificial intelligence (GenAI) presents new opportunities to enhance the efficiency of qualitative coding. This study proposed a computational pipeline using GenAI to automatically extract themes from interview transcripts. <b>Methods</b>: Using transcripts from interviews conducted with maternity care providers in South Carolina, we leveraged ChatGPT for inductive coding to generate codes from interview transcripts without a predetermined coding scheme. Structured prompts were designed to instruct ChatGPT to generate and summarize codes. The performance of GenAI was evaluated by comparing the AI-generated codes with those generated manually. <b>Results</b>: GenAI demonstrated promise in detecting and summarizing codes from interview transcripts. ChatGPT exhibited an overall accuracy exceeding 80% in inductive coding. More impressively, GenAI reduced the time required for coding by 81%. <b>Discussion</b>: GenAI models are capable of efficiently processing language datasets and performing multi-level semantic identification. However, challenges such as inaccuracy, systematic biases, and privacy concerns must be acknowledged and addressed. Future research should focus on refining these models to enhance reliability and address inherent limitations associated with their application in qualitative research.</p>\",\"PeriodicalId\":8127,\"journal\":{\"name\":\"Applied psychology. Health and well-being\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aphw.70038\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied psychology. Health and well-being\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aphw.70038\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied psychology. Health and well-being","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aphw.70038","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
Generative AI for thematic analysis in a maternal health study: coding semistructured interviews using large language models
Study Objectives: The coding of semistructured interview transcripts is a critical step for thematic analysis of qualitative data. However, the coding process is often labor-intensive and time-consuming. The emergence of generative artificial intelligence (GenAI) presents new opportunities to enhance the efficiency of qualitative coding. This study proposed a computational pipeline using GenAI to automatically extract themes from interview transcripts. Methods: Using transcripts from interviews conducted with maternity care providers in South Carolina, we leveraged ChatGPT for inductive coding to generate codes from interview transcripts without a predetermined coding scheme. Structured prompts were designed to instruct ChatGPT to generate and summarize codes. The performance of GenAI was evaluated by comparing the AI-generated codes with those generated manually. Results: GenAI demonstrated promise in detecting and summarizing codes from interview transcripts. ChatGPT exhibited an overall accuracy exceeding 80% in inductive coding. More impressively, GenAI reduced the time required for coding by 81%. Discussion: GenAI models are capable of efficiently processing language datasets and performing multi-level semantic identification. However, challenges such as inaccuracy, systematic biases, and privacy concerns must be acknowledged and addressed. Future research should focus on refining these models to enhance reliability and address inherent limitations associated with their application in qualitative research.
期刊介绍:
Applied Psychology: Health and Well-Being is a triannual peer-reviewed academic journal published by Wiley-Blackwell on behalf of the International Association of Applied Psychology. It was established in 2009 and covers applied psychology topics such as clinical psychology, counseling, cross-cultural psychology, and environmental psychology.