Jing Mi, Linghui Meng, Yutian Wang, Huanyu Zhang, Jing Jin, Jianhao Huang, Jingwei Lu, Pu Ying, Lan Li
{"title":"一种可注射的聚乙二醇/二乙胺基抗炎水凝胶促进软骨再生:体内研究","authors":"Jing Mi, Linghui Meng, Yutian Wang, Huanyu Zhang, Jing Jin, Jianhao Huang, Jingwei Lu, Pu Ying, Lan Li","doi":"10.1002/mame.202400382","DOIUrl":null,"url":null,"abstract":"<p>Cartilage defects are common joint disorders that, if left untreated, may progress to severe degenerative joint conditions. Inflammatory response plays a critical role in the pathogenesis of cartilage damage. Hydrogels incorporating diacerein, an anti-inflammatory drug used in clinical settings, can mitigate inflammation that impairs cartilage repair. It is hypothesized that the direct injection of a hydrogel scaffold combining diacerein and polydopamine into cartilage defect sites can enhance localized treatment, reduce surgical risks, and expedite recovery. Therefore, in this study, a hydrogel infused with diacerein is developed to investigate its efficacy for cartilage restoration. By crosslinking poly(ethylene glycol) diacrylate, four-arm polyethylene glycol-functionalized diacerein, hyaluronic acid, and polydopamine, an injectable hydrogel with superior properties is achieved. In vitro evaluations confirm the mechanical strength and biocompatibility of the hydrogel, and in vivo studies demonstrate its effectiveness in cartilage repair and anti-inflammatory activity in a rat model. These findings indicate that hydrogels are promising materials for addressing cartilage defects and advancing tissue engineering and biological implantation strategies.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400382","citationCount":"0","resultStr":"{\"title\":\"An Injectable PEG/Diacerein-Based Anti-Inflammatory Hydrogel for Promoting Cartilage Regeneration: An In Vivo Study\",\"authors\":\"Jing Mi, Linghui Meng, Yutian Wang, Huanyu Zhang, Jing Jin, Jianhao Huang, Jingwei Lu, Pu Ying, Lan Li\",\"doi\":\"10.1002/mame.202400382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cartilage defects are common joint disorders that, if left untreated, may progress to severe degenerative joint conditions. Inflammatory response plays a critical role in the pathogenesis of cartilage damage. Hydrogels incorporating diacerein, an anti-inflammatory drug used in clinical settings, can mitigate inflammation that impairs cartilage repair. It is hypothesized that the direct injection of a hydrogel scaffold combining diacerein and polydopamine into cartilage defect sites can enhance localized treatment, reduce surgical risks, and expedite recovery. Therefore, in this study, a hydrogel infused with diacerein is developed to investigate its efficacy for cartilage restoration. By crosslinking poly(ethylene glycol) diacrylate, four-arm polyethylene glycol-functionalized diacerein, hyaluronic acid, and polydopamine, an injectable hydrogel with superior properties is achieved. In vitro evaluations confirm the mechanical strength and biocompatibility of the hydrogel, and in vivo studies demonstrate its effectiveness in cartilage repair and anti-inflammatory activity in a rat model. These findings indicate that hydrogels are promising materials for addressing cartilage defects and advancing tissue engineering and biological implantation strategies.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"310 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400382\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400382","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An Injectable PEG/Diacerein-Based Anti-Inflammatory Hydrogel for Promoting Cartilage Regeneration: An In Vivo Study
Cartilage defects are common joint disorders that, if left untreated, may progress to severe degenerative joint conditions. Inflammatory response plays a critical role in the pathogenesis of cartilage damage. Hydrogels incorporating diacerein, an anti-inflammatory drug used in clinical settings, can mitigate inflammation that impairs cartilage repair. It is hypothesized that the direct injection of a hydrogel scaffold combining diacerein and polydopamine into cartilage defect sites can enhance localized treatment, reduce surgical risks, and expedite recovery. Therefore, in this study, a hydrogel infused with diacerein is developed to investigate its efficacy for cartilage restoration. By crosslinking poly(ethylene glycol) diacrylate, four-arm polyethylene glycol-functionalized diacerein, hyaluronic acid, and polydopamine, an injectable hydrogel with superior properties is achieved. In vitro evaluations confirm the mechanical strength and biocompatibility of the hydrogel, and in vivo studies demonstrate its effectiveness in cartilage repair and anti-inflammatory activity in a rat model. These findings indicate that hydrogels are promising materials for addressing cartilage defects and advancing tissue engineering and biological implantation strategies.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)