基于正交多群贪心选择的不确定风力综合场景电力系统FACTS最优配置正弦余弦算法

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sunilkumar P. Agrawal, Pradeep Jangir,  Arpita, Sundaram B. Pandya, Anil Parmar, Mohammad Khishe, Bhargavi Indrajit Trivedi
{"title":"基于正交多群贪心选择的不确定风力综合场景电力系统FACTS最优配置正弦余弦算法","authors":"Sunilkumar P. Agrawal,&nbsp;Pradeep Jangir,&nbsp; Arpita,&nbsp;Sundaram B. Pandya,&nbsp;Anil Parmar,&nbsp;Mohammad Khishe,&nbsp;Bhargavi Indrajit Trivedi","doi":"10.1002/eng2.70167","DOIUrl":null,"url":null,"abstract":"<p>Modern power systems encounter significant challenges in optimal power flow (OPF) management due to the unpredictable nature of wind energy integration. Flexible AC Transmission System (FACTS) devices, including Static VAR Compensator (SVC), Thyristor-Controlled Series Compensator (TCSC), and Thyristor-Controlled Phase Shifter (TCPS), enhance system stability, reduce losses, and lower operational costs when optimally placed. Conventional optimization techniques like Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Moth Flame Optimization (MFO), Gray Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA) struggle to balance exploration and exploitation in complex OPF problems, leading to suboptimal solutions. This study proposes a novel hybrid metaheuristic approach, the Orthogonal Multi-swarm Greedy Selection Sine Cosine Algorithm (OMGSCA), integrating orthogonal learning, multi-swarm mechanisms, and greedy selection to enhance solution quality. Orthogonal learning explores new search spaces, while the multi-swarm strategy improves exploitation. The greedy selection mechanism prevents premature convergence. OMGSCA optimizes FACTS device placement and sizing in wind-integrated power systems under fixed and uncertain loading conditions. Performance evaluation on the IEEE 30-bus test system with wind energy and FACTS devices demonstrates OMGSCA's superiority over traditional algorithms. Case studies focus on minimizing generation costs, active power losses, and gross costs. Results show OMGSCA achieves a power loss of 5.6209 MW in Case 1, comparable to WOA (5.6121 MW) and outperforming PSO, SCA, and MFO by 0.90%, 0.06%, and 0.57%, respectively. OMGSCA's gross generation cost (1369.3961 $/h) surpasses PSO, SCA, MFO, and GWO by 0.39%, 0.28%, 3.48%, and 0.20%, respectively. The algorithm proves effective in OPF problems, delivering cost-efficient operations, reduced losses, and enhanced stability across varying load conditions.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70167","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Multi-Swarm Greedy Selection Based Sine Cosine Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems\",\"authors\":\"Sunilkumar P. Agrawal,&nbsp;Pradeep Jangir,&nbsp; Arpita,&nbsp;Sundaram B. Pandya,&nbsp;Anil Parmar,&nbsp;Mohammad Khishe,&nbsp;Bhargavi Indrajit Trivedi\",\"doi\":\"10.1002/eng2.70167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern power systems encounter significant challenges in optimal power flow (OPF) management due to the unpredictable nature of wind energy integration. Flexible AC Transmission System (FACTS) devices, including Static VAR Compensator (SVC), Thyristor-Controlled Series Compensator (TCSC), and Thyristor-Controlled Phase Shifter (TCPS), enhance system stability, reduce losses, and lower operational costs when optimally placed. Conventional optimization techniques like Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Moth Flame Optimization (MFO), Gray Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA) struggle to balance exploration and exploitation in complex OPF problems, leading to suboptimal solutions. This study proposes a novel hybrid metaheuristic approach, the Orthogonal Multi-swarm Greedy Selection Sine Cosine Algorithm (OMGSCA), integrating orthogonal learning, multi-swarm mechanisms, and greedy selection to enhance solution quality. Orthogonal learning explores new search spaces, while the multi-swarm strategy improves exploitation. The greedy selection mechanism prevents premature convergence. OMGSCA optimizes FACTS device placement and sizing in wind-integrated power systems under fixed and uncertain loading conditions. Performance evaluation on the IEEE 30-bus test system with wind energy and FACTS devices demonstrates OMGSCA's superiority over traditional algorithms. Case studies focus on minimizing generation costs, active power losses, and gross costs. Results show OMGSCA achieves a power loss of 5.6209 MW in Case 1, comparable to WOA (5.6121 MW) and outperforming PSO, SCA, and MFO by 0.90%, 0.06%, and 0.57%, respectively. OMGSCA's gross generation cost (1369.3961 $/h) surpasses PSO, SCA, MFO, and GWO by 0.39%, 0.28%, 3.48%, and 0.20%, respectively. The algorithm proves effective in OPF problems, delivering cost-efficient operations, reduced losses, and enhanced stability across varying load conditions.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于风能整合的不可预测性,现代电力系统在最优潮流(OPF)管理方面面临着重大挑战。灵活的交流传输系统(FACTS)设备,包括静态无功补偿器(SVC),晶闸管控制串联补偿器(TCSC)和晶闸管控制移相器(TCPS),在最佳放置时增强系统稳定性,减少损耗,降低运营成本。传统的优化技术,如粒子群优化(PSO)、正弦余弦算法(SCA)、蛾焰优化(MFO)、灰狼优化器(GWO)和鲸鱼优化算法(WOA),在复杂的OPF问题中难以平衡探索和利用,导致次优解。本文提出了一种新的混合元启发式方法——正交多群贪婪选择正弦余弦算法(OMGSCA),该算法将正交学习、多群机制和贪婪选择相结合,以提高解的质量。正交学习探索新的搜索空间,而多群策略提高了利用效率。贪婪选择机制防止过早收敛。OMGSCA在固定和不确定负载条件下优化风力集成电力系统中的FACTS设备放置和尺寸。基于风能和FACTS设备的IEEE 30总线测试系统的性能评估表明,OMGSCA优于传统算法。案例研究侧重于最小化发电成本、有功功率损耗和总成本。结果表明,在案例1中,OMGSCA实现了5.6209 MW的功率损耗,与WOA (5.6121 MW)相当,比PSO、SCA和MFO分别高出0.90%、0.06%和0.57%。OMGSCA的总发电成本(1369.3961美元/小时)分别比PSO、SCA、MFO和GWO高出0.39%、0.28%、3.48%和0.20%。事实证明,该算法在OPF问题中是有效的,提供了经济高效的操作,减少了损失,并增强了不同负载条件下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Multi-Swarm Greedy Selection Based Sine Cosine Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems

Modern power systems encounter significant challenges in optimal power flow (OPF) management due to the unpredictable nature of wind energy integration. Flexible AC Transmission System (FACTS) devices, including Static VAR Compensator (SVC), Thyristor-Controlled Series Compensator (TCSC), and Thyristor-Controlled Phase Shifter (TCPS), enhance system stability, reduce losses, and lower operational costs when optimally placed. Conventional optimization techniques like Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Moth Flame Optimization (MFO), Gray Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA) struggle to balance exploration and exploitation in complex OPF problems, leading to suboptimal solutions. This study proposes a novel hybrid metaheuristic approach, the Orthogonal Multi-swarm Greedy Selection Sine Cosine Algorithm (OMGSCA), integrating orthogonal learning, multi-swarm mechanisms, and greedy selection to enhance solution quality. Orthogonal learning explores new search spaces, while the multi-swarm strategy improves exploitation. The greedy selection mechanism prevents premature convergence. OMGSCA optimizes FACTS device placement and sizing in wind-integrated power systems under fixed and uncertain loading conditions. Performance evaluation on the IEEE 30-bus test system with wind energy and FACTS devices demonstrates OMGSCA's superiority over traditional algorithms. Case studies focus on minimizing generation costs, active power losses, and gross costs. Results show OMGSCA achieves a power loss of 5.6209 MW in Case 1, comparable to WOA (5.6121 MW) and outperforming PSO, SCA, and MFO by 0.90%, 0.06%, and 0.57%, respectively. OMGSCA's gross generation cost (1369.3961 $/h) surpasses PSO, SCA, MFO, and GWO by 0.39%, 0.28%, 3.48%, and 0.20%, respectively. The algorithm proves effective in OPF problems, delivering cost-efficient operations, reduced losses, and enhanced stability across varying load conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信