不同工况下油箱性能的有限元分析与机器学习预测

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Themba Mashiyane, Lagouge Tartibu, Smith Salifu
{"title":"不同工况下油箱性能的有限元分析与机器学习预测","authors":"Themba Mashiyane,&nbsp;Lagouge Tartibu,&nbsp;Smith Salifu","doi":"10.1002/eng2.70173","DOIUrl":null,"url":null,"abstract":"<p>Ensuring the structural integrity and operational reliability of oil storage tanks is critical to preventing catastrophic failures, including environmental pollution and economic losses. This study integrates Finite Element Analysis (FEA) and Machine Learning (ML) to predict the behavior (structural) and useful life of oil tanks under diverse operating conditions. The methodology involves applying FEA simulation (using Abaqus) to model the strain, stress, and buckling behavior of the oil storage tank. Thereafter, fe-safe postprocessing software was used to post-process the FEA results to estimate the useful life of the tank. These FEA and fe-safe outputs were trained using Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to predict unknown tank operating scenarios. The study revealed that the filled tanks experienced higher stress (485.4 MPa) and reduced life expectancy (1429 h) compared to half-filled tanks (388.7 MPa and 3551 h). For the ML, ANFIS excelled in predicting stress and strain with <i>R</i><sup>2</sup> values of 0.999, while ANN proved superior for useful life predictions with <i>R</i><sup>2</sup> values of 0.998. This hybrid FEA-ML approach enables efficient and precise analysis, thereby facilitating design optimization and maintenance strategies for industrial applications.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70173","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis and Machine Learning-Based Prediction of Oil Tank Behavior Under Diverse Operating Conditions\",\"authors\":\"Themba Mashiyane,&nbsp;Lagouge Tartibu,&nbsp;Smith Salifu\",\"doi\":\"10.1002/eng2.70173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensuring the structural integrity and operational reliability of oil storage tanks is critical to preventing catastrophic failures, including environmental pollution and economic losses. This study integrates Finite Element Analysis (FEA) and Machine Learning (ML) to predict the behavior (structural) and useful life of oil tanks under diverse operating conditions. The methodology involves applying FEA simulation (using Abaqus) to model the strain, stress, and buckling behavior of the oil storage tank. Thereafter, fe-safe postprocessing software was used to post-process the FEA results to estimate the useful life of the tank. These FEA and fe-safe outputs were trained using Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to predict unknown tank operating scenarios. The study revealed that the filled tanks experienced higher stress (485.4 MPa) and reduced life expectancy (1429 h) compared to half-filled tanks (388.7 MPa and 3551 h). For the ML, ANFIS excelled in predicting stress and strain with <i>R</i><sup>2</sup> values of 0.999, while ANN proved superior for useful life predictions with <i>R</i><sup>2</sup> values of 0.998. This hybrid FEA-ML approach enables efficient and precise analysis, thereby facilitating design optimization and maintenance strategies for industrial applications.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

确保储油罐的结构完整性和运行可靠性对于防止包括环境污染和经济损失在内的灾难性故障至关重要。本研究将有限元分析(FEA)和机器学习(ML)相结合,以预测不同操作条件下油箱的行为(结构)和使用寿命。该方法包括应用有限元模拟(使用Abaqus)来模拟储油罐的应变、应力和屈曲行为。然后,利用fe-safe后处理软件对有限元分析结果进行后处理,估算储罐的使用寿命。这些FEA和fe-safe输出使用人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)进行训练,以预测未知的坦克操作场景。研究表明,与半填充的容器(388.7 MPa和3551 h)相比,填充后的容器承受更高的应力(485.4 MPa),预期寿命(1429 h)缩短。对于ML, ANFIS在预测应力和应变方面表现出色,R2值为0.999,而ANN在预测使用寿命方面表现出色,R2值为0.998。这种混合FEA-ML方法实现了高效和精确的分析,从而促进了工业应用的设计优化和维护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Analysis and Machine Learning-Based Prediction of Oil Tank Behavior Under Diverse Operating Conditions

Ensuring the structural integrity and operational reliability of oil storage tanks is critical to preventing catastrophic failures, including environmental pollution and economic losses. This study integrates Finite Element Analysis (FEA) and Machine Learning (ML) to predict the behavior (structural) and useful life of oil tanks under diverse operating conditions. The methodology involves applying FEA simulation (using Abaqus) to model the strain, stress, and buckling behavior of the oil storage tank. Thereafter, fe-safe postprocessing software was used to post-process the FEA results to estimate the useful life of the tank. These FEA and fe-safe outputs were trained using Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to predict unknown tank operating scenarios. The study revealed that the filled tanks experienced higher stress (485.4 MPa) and reduced life expectancy (1429 h) compared to half-filled tanks (388.7 MPa and 3551 h). For the ML, ANFIS excelled in predicting stress and strain with R2 values of 0.999, while ANN proved superior for useful life predictions with R2 values of 0.998. This hybrid FEA-ML approach enables efficient and precise analysis, thereby facilitating design optimization and maintenance strategies for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信