一种一致差分隐私动态轨迹流量预测方法

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongzhi Pan
{"title":"一种一致差分隐私动态轨迹流量预测方法","authors":"Hongzhi Pan","doi":"10.1002/eng2.70159","DOIUrl":null,"url":null,"abstract":"<p>Ensuring privacy while maintaining accuracy in trajectory prediction is a crucial challenge in privacy-sensitive applications such as smart transportation and mobility analytics. This paper presents CDP-DTP (Consistent Differential Privacy Dynamic Trajectory Flow Prediction), a novel approach that effectively balances privacy protection and prediction accuracy in trajectory forecasting. The proposed method constructs a trajectory flow graph and integrates Laplace noise-based differential privacy with consistency constraint adjustments to enhance privacy while maintaining data utility. A CNN-LSTM hybrid model also extracts spatial and temporal features, improving prediction performance through feature fusion. Experiments on real-world trajectory datasets demonstrate that CDP-DTP outperforms traditional differential privacy methods by achieving lower mean squared error (MSE) while ensuring stronger privacy protection across different privacy budget settings. These results validate the model's effectiveness in privacy-sensitive trajectory prediction tasks. The proposed method provides a scalable solution for privacy-preserving mobility analytics and contributes to future research in intelligent transportation and secure data sharing.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70159","citationCount":"0","resultStr":"{\"title\":\"A Consistent Differential Privacy Dynamic Trajectory Flow Prediction Method\",\"authors\":\"Hongzhi Pan\",\"doi\":\"10.1002/eng2.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensuring privacy while maintaining accuracy in trajectory prediction is a crucial challenge in privacy-sensitive applications such as smart transportation and mobility analytics. This paper presents CDP-DTP (Consistent Differential Privacy Dynamic Trajectory Flow Prediction), a novel approach that effectively balances privacy protection and prediction accuracy in trajectory forecasting. The proposed method constructs a trajectory flow graph and integrates Laplace noise-based differential privacy with consistency constraint adjustments to enhance privacy while maintaining data utility. A CNN-LSTM hybrid model also extracts spatial and temporal features, improving prediction performance through feature fusion. Experiments on real-world trajectory datasets demonstrate that CDP-DTP outperforms traditional differential privacy methods by achieving lower mean squared error (MSE) while ensuring stronger privacy protection across different privacy budget settings. These results validate the model's effectiveness in privacy-sensitive trajectory prediction tasks. The proposed method provides a scalable solution for privacy-preserving mobility analytics and contributes to future research in intelligent transportation and secure data sharing.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70159\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在保持轨迹预测准确性的同时确保隐私是智能交通和移动分析等隐私敏感应用的关键挑战。本文提出了一种有效平衡弹道预测中隐私保护与预测精度的新方法——一致性差分隐私动态轨迹流预测(CDP-DTP)。该方法构建轨迹流图,将基于拉普拉斯噪声的差分隐私与一致性约束调整相结合,在保持数据效用的同时增强隐私。CNN-LSTM混合模型提取时空特征,通过特征融合提高预测性能。在真实轨迹数据集上的实验表明,CDP-DTP优于传统的差分隐私方法,实现了更低的均方误差(MSE),同时在不同的隐私预算设置中确保了更强的隐私保护。这些结果验证了该模型在隐私敏感的轨迹预测任务中的有效性。该方法为保护隐私的移动分析提供了一种可扩展的解决方案,有助于未来智能交通和安全数据共享的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Consistent Differential Privacy Dynamic Trajectory Flow Prediction Method

Ensuring privacy while maintaining accuracy in trajectory prediction is a crucial challenge in privacy-sensitive applications such as smart transportation and mobility analytics. This paper presents CDP-DTP (Consistent Differential Privacy Dynamic Trajectory Flow Prediction), a novel approach that effectively balances privacy protection and prediction accuracy in trajectory forecasting. The proposed method constructs a trajectory flow graph and integrates Laplace noise-based differential privacy with consistency constraint adjustments to enhance privacy while maintaining data utility. A CNN-LSTM hybrid model also extracts spatial and temporal features, improving prediction performance through feature fusion. Experiments on real-world trajectory datasets demonstrate that CDP-DTP outperforms traditional differential privacy methods by achieving lower mean squared error (MSE) while ensuring stronger privacy protection across different privacy budget settings. These results validate the model's effectiveness in privacy-sensitive trajectory prediction tasks. The proposed method provides a scalable solution for privacy-preserving mobility analytics and contributes to future research in intelligent transportation and secure data sharing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信