基于分数阶模型的锂离子电池荷电状态估计改进无气味卡尔曼滤波

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-03-27 DOI:10.1007/s11581-025-06247-8
Yingying Wang, Jie Ding, Taotao Tu
{"title":"基于分数阶模型的锂离子电池荷电状态估计改进无气味卡尔曼滤波","authors":"Yingying Wang,&nbsp;Jie Ding,&nbsp;Taotao Tu","doi":"10.1007/s11581-025-06247-8","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional state of charge (SOC) estimation methods, such as Thevenin equivalent circuit models, face limitations in capturing the dynamic behavior of lithium-ion batteries, particularly in terms of impedance and internal electrochemical processes. This paper presents a fractional-order equivalent circuit model that improves on the Thevenin model by substituting an ideal capacitor with a fractional-order capacitor, enabling more accurate representation of battery reactions. A fractional-order particle swarm optimization algorithm with dynamic inertia weights is used for parameter identification, enhancing the model’s ability to reflect actual battery dynamics. The fractional-order unscented Kalman filter (FUKF) manages nonlinearities and uncertainties in SOC estimation, while an integrated sliding mode observer boosts robustness against disturbances and model inaccuracies. Experimental results show that the improved FUKF (IFUKF) achieves superior SOC estimation accuracy. Under UDDS conditions, it reaches a mean absolute error of 0.65%, a root mean square error of 0.69%, and a maximum error of 0.88%. Under DST conditions, the mean absolute error is 0.71%, the root mean square error is 0.73%, and the maximum error is 0.97%.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 5","pages":"4281 - 4298"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved unscented Kalman filter for SOC estimation of lithium-ion batteries based on fractional-order model\",\"authors\":\"Yingying Wang,&nbsp;Jie Ding,&nbsp;Taotao Tu\",\"doi\":\"10.1007/s11581-025-06247-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional state of charge (SOC) estimation methods, such as Thevenin equivalent circuit models, face limitations in capturing the dynamic behavior of lithium-ion batteries, particularly in terms of impedance and internal electrochemical processes. This paper presents a fractional-order equivalent circuit model that improves on the Thevenin model by substituting an ideal capacitor with a fractional-order capacitor, enabling more accurate representation of battery reactions. A fractional-order particle swarm optimization algorithm with dynamic inertia weights is used for parameter identification, enhancing the model’s ability to reflect actual battery dynamics. The fractional-order unscented Kalman filter (FUKF) manages nonlinearities and uncertainties in SOC estimation, while an integrated sliding mode observer boosts robustness against disturbances and model inaccuracies. Experimental results show that the improved FUKF (IFUKF) achieves superior SOC estimation accuracy. Under UDDS conditions, it reaches a mean absolute error of 0.65%, a root mean square error of 0.69%, and a maximum error of 0.88%. Under DST conditions, the mean absolute error is 0.71%, the root mean square error is 0.73%, and the maximum error is 0.97%.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 5\",\"pages\":\"4281 - 4298\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06247-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06247-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的荷电状态(SOC)估计方法,如Thevenin等效电路模型,在捕捉锂离子电池的动态行为方面存在局限性,特别是在阻抗和内部电化学过程方面。本文提出了一种分数阶等效电路模型,它在Thevenin模型的基础上,用分数阶电容代替理想电容,使电池反应的表征更加精确。采用带有动态惯性权重的分数阶粒子群优化算法进行参数辨识,增强了模型反映电池实际动态的能力。分数阶无嗅卡尔曼滤波器(FUKF)管理SOC估计中的非线性和不确定性,而集成滑模观测器提高了对干扰和模型不准确性的鲁棒性。实验结果表明,改进的FUKF (IFUKF)达到了较好的SOC估计精度。在UDDS条件下,平均绝对误差为0.65%,均方根误差为0.69%,最大误差为0.88%。DST条件下,平均绝对误差为0.71%,均方根误差为0.73%,最大误差为0.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved unscented Kalman filter for SOC estimation of lithium-ion batteries based on fractional-order model

Traditional state of charge (SOC) estimation methods, such as Thevenin equivalent circuit models, face limitations in capturing the dynamic behavior of lithium-ion batteries, particularly in terms of impedance and internal electrochemical processes. This paper presents a fractional-order equivalent circuit model that improves on the Thevenin model by substituting an ideal capacitor with a fractional-order capacitor, enabling more accurate representation of battery reactions. A fractional-order particle swarm optimization algorithm with dynamic inertia weights is used for parameter identification, enhancing the model’s ability to reflect actual battery dynamics. The fractional-order unscented Kalman filter (FUKF) manages nonlinearities and uncertainties in SOC estimation, while an integrated sliding mode observer boosts robustness against disturbances and model inaccuracies. Experimental results show that the improved FUKF (IFUKF) achieves superior SOC estimation accuracy. Under UDDS conditions, it reaches a mean absolute error of 0.65%, a root mean square error of 0.69%, and a maximum error of 0.88%. Under DST conditions, the mean absolute error is 0.71%, the root mean square error is 0.73%, and the maximum error is 0.97%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信