钙钛矿太阳能电池的电子传输层材料

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gaojun Jia, Yi Fang, Xiaoli Song, Mingsi Xie, Ruijuan Liao, Ting Geng, Chunxiu Zhang, Ao Zhang, Haifeng Yu
{"title":"钙钛矿太阳能电池的电子传输层材料","authors":"Gaojun Jia,&nbsp;Yi Fang,&nbsp;Xiaoli Song,&nbsp;Mingsi Xie,&nbsp;Ruijuan Liao,&nbsp;Ting Geng,&nbsp;Chunxiu Zhang,&nbsp;Ao Zhang,&nbsp;Haifeng Yu","doi":"10.1007/s10853-025-10883-w","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have surpassed 26% power conversion efficiency (PCE), yet their commercialization is hindered by challenges in the design and optimization of the electron transport layer (ETL). This review elucidates cutting-edge advancements in electron transport layer materials (ETMs) and their fundamental mechanisms. Atomic defect engineering in metal oxides (e.g., F-doped SnO₂) achieves a record electron mobility 320 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, whereas 2D nanolayers (e.g., MXenes, BP) empower flexible photovoltaics to reach a PCE of 24.7% with 95% operational stability across 5000 bending cycles. Tandem perovskite-silicon architectures have reached a certified 34.6% efficiency, benefiting from optimized ETL band alignment and reduced optical losses. A novel “dynamic band alignment” theory, experimentally validated through situ characterization and density functional theory (DFT) simulations, reveals real-time Fermi-level shifts at the ETL/perovskite interface, suppressing 90% of nonradiative recombination and reducing voltage loss to 0.35 V. Beyond efficiency, this review explores interface physics such as ion polarization in heterojunctions and highlights sustainable strategies such as bio-derived carbon ETL. This work establishes a roadmap for the commercialization of stable and efficient PSCs.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 18","pages":"7466 - 7491"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron transport layer materials of perovskite solar cells\",\"authors\":\"Gaojun Jia,&nbsp;Yi Fang,&nbsp;Xiaoli Song,&nbsp;Mingsi Xie,&nbsp;Ruijuan Liao,&nbsp;Ting Geng,&nbsp;Chunxiu Zhang,&nbsp;Ao Zhang,&nbsp;Haifeng Yu\",\"doi\":\"10.1007/s10853-025-10883-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perovskite solar cells (PSCs) have surpassed 26% power conversion efficiency (PCE), yet their commercialization is hindered by challenges in the design and optimization of the electron transport layer (ETL). This review elucidates cutting-edge advancements in electron transport layer materials (ETMs) and their fundamental mechanisms. Atomic defect engineering in metal oxides (e.g., F-doped SnO₂) achieves a record electron mobility 320 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, whereas 2D nanolayers (e.g., MXenes, BP) empower flexible photovoltaics to reach a PCE of 24.7% with 95% operational stability across 5000 bending cycles. Tandem perovskite-silicon architectures have reached a certified 34.6% efficiency, benefiting from optimized ETL band alignment and reduced optical losses. A novel “dynamic band alignment” theory, experimentally validated through situ characterization and density functional theory (DFT) simulations, reveals real-time Fermi-level shifts at the ETL/perovskite interface, suppressing 90% of nonradiative recombination and reducing voltage loss to 0.35 V. Beyond efficiency, this review explores interface physics such as ion polarization in heterojunctions and highlights sustainable strategies such as bio-derived carbon ETL. This work establishes a roadmap for the commercialization of stable and efficient PSCs.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 18\",\"pages\":\"7466 - 7491\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10883-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10883-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已超过26%,但其商业化仍受到电子传输层(ETL)设计和优化方面的挑战的阻碍。本文综述了电子传输层材料(ETMs)的最新研究进展及其基本机理。金属氧化物中的原子缺陷工程(例如,f掺杂的SnO₂)实现了创纪录的电子迁移率320 cm2 V−1 s−1,而2D纳米层(例如,MXenes, BP)使柔性光伏电池的PCE达到24.7%,在5000次弯曲循环中具有95%的运行稳定性。得益于优化的ETL波段对准和降低的光学损耗,串联钙钛矿-硅结构的效率达到了认证的34.6%。一种新的“动态带对准”理论,通过原位表征和密度泛函理论(DFT)模拟实验验证,揭示了ETL/钙钛矿界面上的实时费米能级位移,抑制了90%的非辐射复合,并将电压损失降低到0.35 V。除了效率之外,本文还探讨了界面物理,如异质结中的离子极化,并强调了可持续策略,如生物衍生碳ETL。这项工作为稳定和高效的psc的商业化建立了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron transport layer materials of perovskite solar cells

Perovskite solar cells (PSCs) have surpassed 26% power conversion efficiency (PCE), yet their commercialization is hindered by challenges in the design and optimization of the electron transport layer (ETL). This review elucidates cutting-edge advancements in electron transport layer materials (ETMs) and their fundamental mechanisms. Atomic defect engineering in metal oxides (e.g., F-doped SnO₂) achieves a record electron mobility 320 cm2 V−1 s−1, whereas 2D nanolayers (e.g., MXenes, BP) empower flexible photovoltaics to reach a PCE of 24.7% with 95% operational stability across 5000 bending cycles. Tandem perovskite-silicon architectures have reached a certified 34.6% efficiency, benefiting from optimized ETL band alignment and reduced optical losses. A novel “dynamic band alignment” theory, experimentally validated through situ characterization and density functional theory (DFT) simulations, reveals real-time Fermi-level shifts at the ETL/perovskite interface, suppressing 90% of nonradiative recombination and reducing voltage loss to 0.35 V. Beyond efficiency, this review explores interface physics such as ion polarization in heterojunctions and highlights sustainable strategies such as bio-derived carbon ETL. This work establishes a roadmap for the commercialization of stable and efficient PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信